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Abstract. Lesion detection for medical image is crucial in computer-
aided diagnostic systems, enabling early disease identification and en-
hancing clinical decision-making. Existing lesion detection models pri-
marily rely on bounding boxes for supervision, which overemphasize le-
sion boundaries while neglecting critical internal features, potentially
resulting in misdetections. In contrast, clinicians’ gaze, which reflects
the visual focus during diagnosis, captures internal semantic patterns
of lesions, providing a more informative supervisory signal than conven-
tional annotations. Inspired by this insight, we propose a gaze-driven
detection framework for enhancing lesion identification accuracy. Specif-
ically, our framework introduces three key gaze-prioritized innovations:
1) an adaptive gaze kernel that prioritizes diagnostically significant high-
magnification regions, 2) a gaze-guided assignment module that estab-
lishes query-level gaze-region correspondence, and 3) a query-level con-
sistent loss that aligns detection model attention with clinicians’ gaze
patterns. By incorporating clinicians’ expertise through gaze data, our
method improves lesion detection accuracy and clinical interpretability.
In addition, our method can be designed as a plug-and-play module,
which maintains compatibility with mainstream object detectors. To val-
idate the effectiveness of our method, we employ two public and one
private datasets, and extensive experiments demonstrate its superiority
over existing approaches. Furthermore, we contribute a pioneering gaze-
tracking dataset with 1,669 precise gaze annotations, establishing a new
benchmark for gaze-driven research in object detection. The dataset and
code is available at https://github.com/YanKong0408/GAA-DETR.
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Fig. 1. Illustration of the motivation. (A) DETR’s predictions and overall attention
on the test set demonstrate a tendency to focus on lesion boundaries. (B) Exam-
ples of errors caused by boundary-focused attention for neglecting clinicians’ expertise
(morphology and peritumoral vasculature). (C) Clinicians’ gaze patterns that capture
diagnostic-relevant features can be regarded as better supervisory annotations.

1 Introduction

Lesion detection plays a critical role in clinical practice by enhancing diagnos-
tic accuracy and efficiency through precise localization of anatomical structures
and pathological findings [1,6]. It also serves as an integral component of auto-
mated diagnosis systems to streamline workflows and enable reliable AI-driven
healthcare solutions at scale [29,22].

Despite its clinical importance, current lesion detection models rely solely on
bounding box supervision, demonstrating a critical flaw [7,18]: heavily depending
on intensity contrast at lesion boundaries while neglecting internal characteristics
within the lesion (Fig. 1 (A)). This boundary-focused attention pattern often
leads to detection failure, as exampled in Fig. 1 (B): in one case incorrectly
detecting normal tissue as tumor by ignoring internal textures (top), and in
another misclassifying a distinctly malignant tumor by disregarding peritumoral
vasculature (bottom). The correlation between attention focusing on boundaries
and poor detection performance is also evidenced by the results in Section 4.
These failure cases reveal the limitation of conventional detection paradigms
and highlight the urgent need for more comprehensive diagnostic annotations.

Clinical gaze patterns offer a promising solution to this limitation. Emerging
research suggests that intergrating decision-related gaze patterns could signifi-
cantly enhance computer-aided diagnosis systems [19], because eye-tracking data
reflect the visual focus during diagnosis and capture internal semantic patterns
of lesions, providing a more informative supervisory signal absent in current
data-driven models [25,21,23]. For example, the focus of gaze on peritumoral
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vessels and the morphological context in mammography (Fig. 1 (C)) highlights
how gaze patterns can capture subtle diagnostic signatures that conventional
boxes-driven detection models often overlook.

However, current gaze-integrated detection systems face dual challenges in
both architectural design and data availability. From the perspective of archi-
tectural design, existing frameworks suffer from inadequate spatial specificity of
gaze heatmaps [17,12], mandatory reliance on gaze inputs during inference [15],
and inefficient utilization of gaze data at lesion-level [16,2]. From the aspect of
available data, research is limited by scarce public gaze datasets [19], while ex-
isting works [11,3,9] lack raw temporal-spatial gaze sequences and lesion-specific
regions-of-interest (ROIs), restricting the spatiotemporal analysis of gaze.

To address these limitations, we propose Gaze-Aligned-Attention Detection
Transformer (GAA-DETR) – a gaze-prioritized detection framework and intro-
duce the first medical gaze-tracking dataset (2,450 images, 1,669 open-sourced).
Our framework integrates three key innovations: an adaptive gaze kernel en-
abling magnification-aware refinement of diagnostic regions; a gaze-guided Hun-
garian matching module establishing query-attention semantic alignment; and
a query-level consistency loss enforcing spatial correspondence between model
attention and clinicians’ visual focus. The dataset combines mammograms and
cervical pathology images with comprehensive gaze annotations, representing the
first public gaze benchmark for lesion detection research. Experiments demon-
strate our method enhances detection accuracy and anatomical plausibility while
maintaining compatibility with mainstream detectors through modular design.

We summarize our major contributions as follows:
– Attention phenomenon discovery: We observe that traditional models

focus on lesion boundaries but overlook internal features, causing errors,
whereas clinicians’ gaze captures these critical decision-relevant features.

– Architectural innovations: We propose a novel detection framework that
integrates clinical gaze priors via query-level attention alignment.

– Open-source dataset: We contribute the first large-scale gaze-tracking
dataset for lesion detection with comprehensive annotations.

– Empirical validation: Extensive experiments demonstrate superior perfor-
mance, clinical interpretability and compatibility of our method.

2 Method

In this section, we present our end-to-end GAA-DETR model through three
components: a data transformation pipeline incorporating novel adaptive gaze
kernel, a concise overview of the model architecture, and the loss calculation
module. Notably, our framework does not require gaze during inference.

2.1 Adaptive Gaze Data Transformation

This module is to transform raw gaze data into query-level ground-truth rep-
resentations that can be effectively utilized by our model. This section starts
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Fig. 2. Overview of the proposed method. (A) Adaptive Gaze Kernel: the focal region
of gaze point can be modeled as a Gaussian kernel. (B) Data Transformation Pipeline
transforms gaze data into query-level ground-truth. (C) Model Architecture generates
predictions. (D) Loss Calculation aligns model attention and clinician gaze patterns.

with the innovative Adaptive Gaze Kernel algorithm for sequence-to-heatmap
conversion and followed by the overall data transformation pipeline.
Adaptive Gaze Kernel: Radiologists often zoom in on high-resolution im-
ages to examine critical local regions in detail. Clinical observations reveal a
correlation between magnification levels and the diagnostic significance of focal
regions. Based on this insight, we propose a novel adaptive gaze kernel algo-
rithm to leverage magnification information for improved heatmap generation.
As demonstrated in Fig. 2 (A), the focal region of individual gaze point during
diagnosis can be modeled as a Gaussian kernel [24]. Our implementation adapts
kernel properties to magnification factors: higher factors correspond to smaller,
more intense kernels (σ = f/β ). The adaptive Gaussian blur is formalized as:

Heatmap(x, y) = Normalize

 ∑
(xi,yi)∈P

λf

2π
exp

(
− (x− xi)

2 + (y − yi)
2

2σ2

) , (1)

where P denotes gaze point coordinates, λ controls intensity scaling, f represents
the magnification factor, and β is the proportionality constant.
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Data Transformation Pipeline: As illustrated in Fig. 2 (B), our pipeline first
generates raw heatmap through adaptive Gaussian blurring, followed by noise
reduction via thresholding and small-area removal [12]. The processed heatmap
is subsequently decomposed into two clinically meaningful components: object
attention (contiguous regions within bounding boxes exceeding 50% of total area,
representing lesion-specific clinician focus) and gaze-only attention (remaining
regions indicating significant potential clinical interest, inspired by [12]).

2.2 Model Architecture

Our model, based on the DETR [5] architecture, processes input images through
a backbone to extract multi-scale features, which are added with positional em-
beddings and fed into a transformer encoder. The encoder outputs generate keys
and values, while learnable queries undergo refinement through cross-attention
mechanisms in the transformer decoder. Subsequently, a feed forward network
(FFN) performs regression tasks, yielding both category and location predic-
tions. The learnable queries can be regarded as candidate boxes’ features, and
their respective attention weights can be hooked during model’s forward pass.

2.3 Loss Calculation

Our proposed loss calculation module starts with Gaze Hungarian Assignment to
establish pairings between ground-truth annotations and predicted boxes. This
approach enhances the semantic understanding of queries via gaze supervision,
enabling efficient alignment of feature representations with clinician focus. At-
tention alignment module contributes to robust convergence through improved
matching stability. To formalize this assignment, we define the Gaze Hungarian
Matrix with lesion-containing queries aligned before gaze-only queries:

Lmatch(yi, yσ(i)) =

{
−P̂σ(i)(ci) + LB(bi, bσ(i)) + LA(ai, aσ(i)), yi ∈ Object
max(LObj

C ) + max(LObj
B ) + LA(ai, aσ(i)), yi ∈ Gaze-only

, (2)

where yi denotes the ground truth, yσ(i) represents predicted results, b is the
bbox, and a repesents the heatmap, LC denotes focal classification loss, LB is L1
loss for box regression, and LA corresponds to MSE loss for attention alignment.

Then, a novel Gaze Attention Guidance Detection (GAGD) loss effectively
integrates gaze semantic information into the model. We define it as:

LGAGD = λ1LC + λ2LB + λ3L
Obj
A + λ4L

Gaze−only
A , (3)

where weighting coefficients λ1, λ2, λ3 and λ4 maintain component balance. The
gaze-only attention term guides query regression toward clinical regions of in-
terest (e.g., lesion-like confounding areas). This mechanism not only enhances
semantic understanding through additional contextual cues to distinguish be-
tween normal and abnormal regions, but also enables efficient feature utilization
by increasing query dispersion. Overall, our GAGD Loss achieves holistic opti-
mization of detection accuracy while encoding clinicians’ attention patterns.
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Fig. 3. Dataset Overview. The datasets include annotations for malignant lesions (red)
and benign lesions (green), eye-tracking data such as gaze points (orange), scan path
(yellow) and instant magnification of the image, alongside the processed gaze heatmaps.

The framework eliminates post-processing dependencies (e.g., NMS) through
its one-to-one matching paradigm, establishing an end-to-end detection pipeline,
while efficiently enhancing the detection performance through synergistic align-
ment of computational focus with diagnostic priorities from gaze.

3 Dataset

Our dataset comprising 2 public and 1 private subsets, totaling 2450 images with
eye-tracking data. The comprehensive gaze data for both public subsets will be
open-sourced, establishing the first gaze dataset for lesion detection.

Gaze-tracking data were collected using the Tobii 4C eye-tracker at 100 Hz
with the software [24]. The tracking module was non-disruptively embedded
within radiologists’ diagnostic annotation workflows. Periodic recalibration (ev-
ery 80 images) ensured measurement accuracy. Annotations were physician-
verified or cross-validated, with quality control removing substandard data.

The dataset comprises 2,450 medical images with comprehensive gaze an-
notations shown in Fig. 3. Gaze potentially highlights tumor morphology and
peritumoral vasculature to aid breast tumor detection [10] and fungal hyphae
and spore structures to improve cervical candida detection [4]. It includes:
Breast Dataset: 857 border-trimmed mammograms sourced from [20,13], with
367 malignant and 389 benign tumor from a 3-year-experienced researcher.
ComparisonDetector (CD) Dataset: 781 cervical TCT images with 702 an-
notations, sourced from [14] and labeled by a 2-year-experienced researcher.
In-House Cervical Candida Dataset: 812 cervical TCT images with 1234
annotations, labeled by two researchers (2/3-year-experienced).
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Fig. 4. Qualitative results. Our GAA-DETR focuses on internal clinical features and
improves detection performance in both radiological and pathological tasks.

4 Experiments

Experimental Settings To ensure experimental consistency, all models were
trained on a NVIDIA RTX A6000 GPU for an equivalent epoch. The dataset
was randomly split at a ratio of 6:1:1 for training/validation/testing. We report
test set performance of the best validation checkpoint using standard detection
metrics [5] (AP0.5:0.95, AP0.5, AP0.75, AR10, AR100) and our novel Attention
Distribution (AD) metric. Given that xc, yc, w, h denote coordinates of the pre-
dicted box, AD = 1

N

∑
x,y A(x, y)P (x, y) (x−xc)(y−yc)

wh . Higher AD scores reflect
a stronger concentration of model attention around box boundaries.

Table 1. Comparative performance metrics of ours and other gaze-based models.

Dataset Method AP0.5:0.95 AP0.5 AP0.75 AR10 AR100 AD

Breast
Dataset

MDF-Net 0.142 0.298 0.161 0.399 0.402 0.193
DETR+CG-CAM 0.182 0.337 0.150 0.411 0.436 0.113
Gaze-DETR 0.188 0.344 0.188 0.453 0.507 0.167
GAA-DETR(Ours) 0.199 0.351 0.205 0.434 0.483 0.124

CD Dataset

MDF-Net 0.131 0.287 0.109 0.299 0.320 0.142
DETR+CG-CAM 0.101 0.175 0.088 0.376 0.593 0.145
Gaze-DETR 0.133 0.325 0.097 0.400 0.408 0.162
GAA-DETR (Ours) 0.158 0.340 0.115 0.396 0.567 0.131

In-house
Dataset

MDF-Net 0.119 0.347 0.054 0.278 0.302 0.396
DETR+CG-CAM 0.165 0.427 0.103 0.339 0.483 0.367
Gaze-DETR 0.170 0.442 0.093 0.346 0.502 0.330
GAA-DETR(Ours) 0.188 0.504 0.123 0.360 0.545 0.317
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Comparison with Other Gaze-based Detection Methods Benchmarked
against the feature fusion-based MDF-Net [8], image-level alignment method
DETR+CG-CAM [28], and gaze denoising method Gaze-DETR [12], as shown in
Table 1, our GAA-DETR demonstrates leading performance across all evaluation
metrics, indicating optimal gaze information utilization.

We also present qualitative results in the Fig. 4. Our method effectively
focuses on peritumoral vessels and morphological context in mammographic im-
ages, as well as hyphal and spore structures in pathological candida, thus en-
hancing the detection performance. Both qualitative results and quantitative
AD metrics reveal a correlation between higher performance and internal focus,
supporting our hypothesis that boundary-focused attention is less effective.

Table 2. Performance comparison of different models with and without our GAA.

Method Breast Dataset CD Dataset In-house Dataset
AP0.5:0.95 AR100 AD AP0.5:0.95 AR100 AD AP0.5:0.95 AR100 AD

DETR 0.170 0.468 0.193 0.115 0.555 0.142 0.143 0.487 0.396
GAA-DETR 0.199 0.483 0.124 0.158 0.567 0.131 0.188 0.544 0.317

Dino 0.283 0.589 0.188 0.230 0.668 0.133 0.193 0.594 0.327
GAA-Dino 0.294 0.602 0.164 0.242 0.698 0.112 0.204 0.600 0.301
RT-DETR 0.220 0.593 0.185 0.238 0.648 0.171 0.149 0.584 0.387

GAA-RT-DETR 0.244 0.609 0.110 0.258 0.664 0.159 0.164 0.575 0.309

Compatibility of our method To demonstrate the compatibility of our method
and further validate its effectiveness, we extend our method to current main-
stream detection models: the foundational DETR [5], the state-of-the-art Dino [26],
and the real-time optimized RT-DETR [27]. As depicted in the Table 2, our ap-
proach consistently delivered performance improvements across all frameworks
and datasets, affirming the effectiveness and compatibility of our method.

Table 3. Ablation Study evaluating the impact of the adaptive gaze kernel (AGK), gaze
Hungarian assignment (GHA), and Gaze-Attention Guided Detection loss (GAGD).

Method Breast Dataset CD In-house Dataset
AGK GHA GAGDL AP0.5:0.95 AR100 AP0.5:0.95 AR100 AP0.5:0.95 AR100

0.170 0.468 0.115 0.544 0.143 0.487
✓ 0.175 0.477 0.121 0.537 0.153 0.480

✓ 0.179 0.481 0.138 0.658 0.165 0.480
✓ ✓ 0.180 0.501 0.145 0.492 0.180 0.487

✓ ✓ ✓ 0.199 0.483 0.158 0.567 0.188 0.544

Ablation Study We performed an ablation study on GAA-DETR to evaluate
the impact of each component. The results demonstrate the utility of each mod-
ule, with particularly significant improvements observed from the Gaze Adaptive
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Kernel and GAGD Loss components. These findings highlight the importance of
lesion-level alignment and the processing of gaze data.

5 Conclusion

Our study introduces GAA-DETR, a novel detection framework that integrates
gaze data to enhance lesion detection through query-level alignment. By focus-
ing on clinically relevant features that often overlooked by traditional boundary-
based methods, our approach achieves superior performance in both radiological
and pathological tasks, underscoring the value of gaze-pattern integration. We
further contribute a novel gaze dataset for lesion detection with comprehensive
gaze annotations, offering a platform for further research into gaze-informed clin-
ical tools. We hope this contribution will facilitate further research into reliable
AI solutions for healthcare that integrate human diagnostic expertise.
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