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Abstract. Survival analysis based on Whole Slide Images (WSIs) is cru-
cial for evaluating cancer prognosis, as they offer detailed microscopic
information essential for predicting patient outcomes. However, tradi-
tional WSI-based survival analysis usually faces noisy features and lim-
ited data accessibility, hindering their ability to capture critical prognos-
tic features effectively. Although pathology reports provide rich patient-
specific information that could assist analysis, their potential to enhance
WSI-based survival analysis remains largely unexplored. To this end,
this paper proposes a novel Report-auxiliary self-distillation (Rasa)
framework for WSI-based survival analysis. First, advanced large lan-
guage models (LLMs) are utilized to extract fine-grained, WSI-relevant
textual descriptions from original noisy pathology reports via a care-
fully designed task prompt. Next, a self-distillation-based pipeline is de-
signed to filter out irrelevant or redundant WSI features for the student
model under the guidance of the teacher model’s textual knowledge. Fi-
nally, a risk-aware mix-up strategy is incorporated during the training
of the student model to enhance both the quantity and diversity of the
training data. Extensive experiments carried out on our collected data
(CRC) and public data (TCGA-BRCA) demonstrate the superior effec-
tiveness of Rasa against state-of-the-art methods. Our code is available
at https://github.com/zhengwang9/Rasa.

Keywords: Survival prediction · Multimodal learning · Whole slide im-
age · Self-distillation · Mix-up augmentation.
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1 Introduction

Survival analysis based on Whole Slide Images (WSIs) is crucial for evaluat-
ing cancer prognosis, as they offer detailed microscopic information essential
for predicting patient outcomes. As the gold standard for cancer diagnosis and
prognosis [18], WSIs capture critical features such as cellular structures, tumor
microenvironment, and tissue phenotypes. However, the effectiveness of tradi-
tional WSI-based survival analysis is often limited by two major challenges.
First, the ultra-high resolution of WSIs introduces a vast number of irrelevant
and redundant features, compromising analysis accuracy. Second, the acquisition
of large-scale, high-quality data faces significant obstacles, including the need to
meticulously label samples, privacy concerns, and extended follow-up periods.

Previous studies have attempted to tackle the two challenges by employing
data augmentation [15,21,25] or de-noising directly on WSIs and labels [4,18],
while others have incorporated rich multimodal data to facilitate more sophis-
ticated survival analysis [3,11,24]. More recently, descriptions generated by ad-
vanced large language models (LLMs) have been introduced to enhance WSI-
related tasks [7,17]. Compared with them, pathology reports offer richer patient-
specific information, including high-level semantic descriptions of key findings,
which could significantly aid analysis. However, the potential of leveraging these
reports to enhance WSI-based survival analysis remains largely unexplored. This
motivates our investigation into utilizing pathology reports to help overcome the
two distinct limitations (i.e., noisy features and limited data accessibility).

To this end, we proposes a novel Report-auxiliary self-distillation (Rasa)
framework for WSI-based survival analysis. First, to tackle the issue of noise
(e.g., unmatched content with WSIs) in pathology reports, we employ advanced
LLMs to transfer the noisy raw texts into detailed, WSI-aligned textual descrip-
tions with a carefully crafted task-specific prompt. Next, to facilitate the student
model’s focus on prognostically relevant information, we design a self-distillation
pipeline that filters out irrelevant and redundant WSI features, guided by the
teacher model’s textual knowledge. Finally, we introduce a risk-aware mix-up
strategy to enhance both data quantity and diversity during the student model
training. Our contributions are summarized as follows:

1. We are the first to leverage pathology reports to improve WSI-based survival
analysis, demonstrating the significant potential of integrating pathology
reports with WSI analysis to advance computational pathology.

2. We develop a novel Report-auxiliary self-distillation (Rasa) framework to
enhance WSI-based survival analysis by addressing two core challenges, i.e.,
noisy features and limited data accessibility in Sec. 2.

3. We extensively evaluate our method on our collected data (CRC) and public
data (TCGA-BRCA) in Sec. 3. The results demonstrate the superior perfor-
mance of our method against the state-of-the-art (SOTA) methods.
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Fig. 1. The overview of Rasa framework.

2 Method

An overview of Rasa framework is available in the workflow presented in Fig. 1.
It mainly includes two stages: Text-Fused Teacher Model Training and Tumor-
Focused Student Model Training. In the first stage, we pre-process the raw data
(i.e., WSIs and pathology reports) into representative features and use them to
train a teacher model. In the second stage, we employ the text-guided sampling
module to filter noisy features and the risk-aware mix-up module to augment
data. Subsequently, we train the student model under teacher model’s guidance.

2.1 Data Processing

For each WSI Xi, we use a pre-trained vision encoder of CONCH [16] to extract
patch features Xi = {Xij}|Xi|

j=0 . For each pathology report Ti, we first use GPT-4
[1] to transfer it into detailed, WSI-aligned textual descriptions and then encode
them into token features Ti = {Tij}|Ti|

j=0 by a pre-trained BioClinicalBert [23].
Specifically, we carefully designed a text prompt for GPT-4 [1] to emphasize the
details of microscopic visual characteristics in WSIs and eliminate WSI-irrelevant
information (e.g., lymph node information, immunohistochemistry results, and
certain genetic data). This facilitates the interaction between textual information
and WSIs, as empirically evidenced by Table 2 and Fig. 4.
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2.2 Text-Fused Teacher Model Training

After processing data, we use all extracted features (i.e., patch feature Xi and
text feature Ti) to pre-train a Text-Fused Former (TFF) model as the teacher
(i.e., Stage I in Fig. 1). Concretely, Ti is converted into the teacher’s textual
knowledge T

(proj)
i via a projector (i.e., the orange Linear in Fig. 1) and refined

with a Q-Former [14]. For Xi, we directly encode it via a self-attention module.
By using T ′

i as the query and X ′
i as the key and value, we compute cross-attention

between T ′
i and X ′

i to summarize the task-essential information, which is pooled
and passed through the head for predictions. The training objective is presented
in Eq. (4), and the forward process of the TFF model is outlined as follows:

T ′
i = Q-Former(T (proj)

i ), T
(proj)
i = Linear(Ti), X ′

i = self-attn(Xi),

yi = head(Pool(Zi)), Zi = cross-attn(T ′
i , X

′
i, X

′
i). (1)

2.3 Tumor-Focused Student Model Training

Text-Guided Patch Sampling: While the extremely high resolution of WSIs
benefits survival analysis by offering rich information, it also introduces numer-
ous irrelevant and redundant patches that can distract the model and compro-
mise its performance. Since pathologists typically draw conclusions based on
lesion regions (i.e., cancerous areas) in clinical practice [6], we propose to filter
out noise in WSIs by leveraging the teacher model’s textual knowledge (e.g.,
Block 1○ in Fig. 1). First, we select token features Si = {T (proj)

ij |j is selected}
from the teacher’s textual knowledge T (proj)

i corresponding to manually specified
keywords (e.g., “tumor” or “cancer“) in tokenized input texts. Next, we average
selected features into the key textual feature T (key)

i = 1
|Si|

∑
j∈Si

T
(proj)
ij . Finally,

we filter out patches dissimilar to the key textual feature using cosine similarity:

X
(key)
i =

{
Xij |

Xij · T (key)
i

∥Xij∥2∥T (key)
i ∥2

≥ γ, Xij ∈ Xi

}
, (2)

where γ is a pre-defined threshold. This strategy effectively filters out a large
number of noisy patches by retaining only key patches strongly associated with
tumor regions, as shown in Fig. 4, and it also enhances efficiency by eliminating
time-consuming, expertise-dependent manual labeling of cancerous areas.

Risk-aware Mix-up: To tackle the challenge of limited data accessibility, we
consider employing mix-up-based data augmentation to improve the quantity
and diversity of the training data. However, directly mixing up pairs of samples
(e.g., WSIs, labels and reports) without recognizing their risks could potentially
yield misleading fusion. For example, it would be improper to associate a mixed
WSI that contains high-risk patches with a low-risk text report. To this end,
we first use the pre-trained teacher model to label the samples’ risk ri = I(si ≥
smedium), where si = sigmoid(yi) and smedium is the medium number of {si}Ni=1
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over the training set. Then, we respectively mix each sample’s text features Ta,
key patch features X(key)

a , and labels Ya with another one’s (e.g., (Tb, X
(key)
b , Yb))

into a new sample (Tmix, Xmix, Ymix) with a probability paug. For the text feature,
we directly set Tmix = Ta for pairs of samples with homogeneous risks (e.g., high-
high and low-low risks) while using Tmix = Targmax(ra,rb) for pairs of samples
with heterogeneous risks (e.g., high-low risks). This is because high-risk samples
often provide more critical characteristics than low-risk ones in survival analysis.
For patch features, we randomly select 100 ∗ pmix% from X

(key)
a and 100 ∗ (1−

pmix)% from X
(key)
b and combine them into Xmix. Compared with previous bag

mix-up strategies [4,15], we only mix the key patches selected by the textual
knowledge, as mixing low-information patches causes low efficiency in increasing
data diversity. For the labels Y = (c, t) –e.g., the censoring status c and survival
time t– we adopt a soft-mixing strategy to ensure that the mixed label accurately
reflects the contribution of both participants, as is computed below:

cmix = (1− pmix)ca + pmixcb, tmix = (1− pmix)ta + pmixtb. (3)

2.4 Training Procedure

The task objective is to minimize the Cox loss [27] as defined below:

Lcox = −
N∑
i=1

δi

yi − log
∑

j∈R(ti)

eyj

 , (4)

where yi represents the output of the model, and R(ti) is the risk set at time
ti. Besides, we introduce Kullback-Leibler (KL) divergence [20] to leverage the
teacher model to guide the student model on non-augmented samples as:

LKL = DKL(yi,student∥yi,teacher), (5)

as the teacher model might yield unreliable results on unseen augmented samples.
The student’s objective Lcox+λL(non−aug)

KL enables it to additionally learn from
the teacher’s refined knowledge, where λ is set to balance the two objectives.

3 Experiment

3.1 Experimental Settings

Datasets: The experiments were conducted on a Colorectal Cancer (CRC)
cohort comprising 302 cases collected from a collaborating hospital, and a pub-
licly available Breast Invasive Carcinoma cohort from The Cancer Genome At-
las (TCGA-BRCA) [9], consisting of 331 cases. We employed a 5-fold cross-
validation where the train/validation/test ratio is 0.6/0.2/0.2 within each trial.
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Table 1. The performance of our model compared with SOTA methods.

Type Method CRC TCGA-BRCA
Vision-only ABMIL [10] 0.5132±0.0982 0.6368±0.0437

PatchGCN [2] 0.5474±0.1144 0.6372±0.0611

TransMIL [19] 0.5348±0.0787 0.5934±0.0232

DSMIL [13] 0.5234±0.1256 0.6284±0.0509

MambaMIL [26] 0.5416±0.0954 0.6366±0.0149

Vision & Text QPMIL-VL [7] 0.5748±0.0733 0.5826±0.0517

TOP [17] 0.5488±0.0647 0.5434±0.0291

MCAT [8] 0.5592±0.1020 0.6198±0.0520

Bag Mix-up PseMix [15] 0.5824±0.1018 0.6500±0.0432

RankMix [4] 0.5262±0.1349 0.6120±0.0803

Rasa (Ours) 0.6834±0.1331 0.6972±0.0500

Metric: We use the Concordance Index (CI) [22] as the metric to measure
the performance in predicting survival outcomes. We fairly report the averaged
testing results of the models that optimally perform on the validation set.

Implementation: We use Adam optimizer to train the model [12] for 60 epochs
with a fixed batch size of 8 and a learning rate of 1× 10−5. λ is optimally tuned
to 1× 10−2 and 1× 10−5, respectively for CRC and TCGA-BRCA datasets.

3.2 Comparison with SOTA Methods

We compare our methods with three types of baselines: i) vision-only models
[10,2,19,13,26], ii) vision-language (VL) models [7,17,3], and iii) bag mix-up
strategies [4,15]. The results in Table 1 suggest the superiority of our approach
on both datasets in survival prediction tasks. First, vision-only models achieve
moderate performance, revealing the limitations of relying solely on noisy visual
information for capturing nuanced details essential for accurate survival predic-
tion. Second, vision-language (VL) models show only marginal improvements
on CRC and a slight decline on TCGA-BRCA against vision-only models. We
attribute this to the simplistic textual information (e.g., generic class names
and GPT-generated descriptions) used by these VL models, lacking sufficient
slide-specific details for further improvement. Third, among the bag mix-up aug-
mentation strategies, PseMix (Pseudo-bag mixup augmentation [15]) stands out
as the best-performing baseline, demonstrating the effectiveness of mix-up tech-
niques in improving model performance. The poor performance of RankMix [4]
may be due to its heavy reliance on the ability of the teacher model. Finally,
our Rasa achieves the highest performance on both datasets, highlighting the ef-
fectiveness of generating slide-specific textual descriptions and integrating them
into the decision process.
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Table 2. Results of textual variates

Config CRC TCGA-BRCA
w/o Text 0.5566±0.1137 0.6362±0.0335

’Tumor cells’ 0.6020±0.0988 0.6618±0.0735

GPT Text 0.6450±0.0823 0.6636±0.0407

Original Report 0.6394±0.0973 0.6564±0.0224

CONCH Text-Encoder 0.6178±0.1529 0.6354±0.0532

Ours 0.6834±0.1331 0.6972±0.0500

Table 3. Ablation study on sub-modules

Config CRC TCGA-BRCA
Teacher Model 0.6196±0.1336 0.6494±0.0269

w/o Loss KL & Mix-up 0.6678±0.1663 0.6618±0.0620

w/o Mix-up 0.6746±0.1465 0.6750±0.0510

w/o Loss KL 0.6726±0.1316 0.6908±0.0430

Ours 0.6834±0.1331 0.6972±0.0500

3.3 Ablation Studies

Impact of Text: To validate our designed textual modality, we tested vari-
ous alternatives in Table 2: no text (w/o Text), “Tumor cells”, GPT-generated
descriptions (GPT Text), original pathology reports (Original Report), and
CONCH text embeddings (CONCH Text-Encoder). Removing text (i.e., w/o
text) yields the worst results while using simple “Tumor cells” shows non-trivial
improvement, highlighting the indispensable importance of texts. GPT Text
achieves suboptimal performance by offering rich textual context. Although
Original Report introduces more patient-specific information than GPT Text
while similarly offering context, its effectiveness is limited by noise. CONCH
text embeddings also underperform our method that uses BioClinicalBert. Our
approach, leveraging LLMs for precise, contextually aligned text descriptions,
achieves the best performance, demonstrating the effectiveness of advanced text
processing in pathological image analysis. These findings underscore the impor-
tance of sophisticated text integration for accurate and robust survival predic-
tion.

Effect of Sub-Module: We evaluate the impact of each sub-module in Rasa
through ablation studies in Table 3. The results show that directly using the
teacher model yields the poorest performance. Removing either the Mix-up mod-
ule or the teacher guidance from LKL leads to a performance drop, while remov-
ing both results in a more significant decline. This indicates the effectiveness of
each sub-module and the importance of their collaborative interaction.

Effect of Hyper-Parameters: We investigate the impact of paug (i.e., the
augmentation probability), λ (i.e., the coefficient of LKL) in Fig. 2. For paug, a
lower value may lead to insufficient diversity of data, while a higher one could

Fig. 2. Impact of the augmentation probability paug and the coefficient λ
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Fig. 3. Kaplan-Meier curves for predicted high-risk (red) and low-risk (green) groups
on the test sets of the CRC (top) and TCGA-BRCA (bottom) datasets

introduce excessive noise, potentially degrading the model’s performance. The
optimal value of paug is 0.7 for both the CRC and TCGA-BRCA datasets. For
λ, optimal performance was achieved with values of 1 × 10−2 and 1 × 10−5 for
the CRC and TCGA-BRCA datasets, respectively.

3.4 Visualization

Kaplan–Meier Analysis: We further validate the effectiveness of our method
via Kaplan-Meier (KM) curves in Fig. 3. We follow [5] to divide patients in
the test set into low-risk and high-risk groups based on the median risk score
from the training set. The statistical significance of the survival time differences
between these groups was evaluated using the log-rank test, with a p-value below
0.01 indicating statistical significance. Compared with other SOTA methods, our
method achieved remarkably low p-values on both datasets while demonstrating
a clear and robust separation between low-risk and high-risk groups.

Fig. 4. Text-patch similarity score maps and preserved patches with different γ.
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Effect of Threshold: The text-patch similarity score map with different values
of γ (the patch sampling filter threshold) is shown in Fig. 4. Regions with high
text-patch similarity predominantly overlap with cancerous areas (i.e., green-
lined regions), demonstrating that the teacher model’s refined text features effec-
tively align the embeddings of text keywords with patch embeddings. For another
thing, the impact of varying thresholds on patch filtering is evident, as increasing
the threshold retains more cancerous patches but introduces noisy patches. We
selected a threshold of 0.5 in experiments, as it optimally balances the retention
of cancerous regions with minimal inclusion of non-cancerous patches.

4 Conclusion

In this paper, we propose a Report-auxiliary self-distillation (Rasa) framework
to address two core challenges in WSI-based survival analysis: noisy features and
limited data accessibility. By leveraging advanced LLMs and carefully designing
modules, we successfully enhanced WSI-based survival analysis with the assis-
tance of reports. Extensive experiments on CRC and TCGA-BRCA datasets
confirm the superiority of Rasa. We plan to fully release the power of the report-
auxiliary data enhancement technique in more WSI analysis tasks in the future.
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