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Abstract. Lymphoma subtype classification has a direct impact on
treatment and outcomes, necessitating models that are both accurate
and explainable. This study proposes a novel explainable Multi-Instance
Learning (MIL) framework that identifies subtype-specific Regions of In-
terest (ROIs) from Whole Slide Images (WSIs) while integrating features
of cell distribution and image. Our framework simultaneously addresses
three objectives: (1) indicating appropriate ROIs for each subtype, (2)
explaining the frequency and spatial distribution of characteristic cell
types, and (3) reaching accurate subtyping using both cell distribution
and image modalities. Our method fuses cell graph and image features
extracted for each patch in a WSI by a Mixture-of-Experts-based ap-
proach and classifies subtypes within an MIL framework. Experiments
on a dataset of 1,233 WSIs demonstrate that our approach achieves state-
of-the-art accuracy compared to ten other methods and provides region-
and cell-level explanations that align with a pathologist’s perspective.
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1 Introduction

Subtyping of malignant lymphomas is important because it is essential for deter-
mining appropriate treatment strategies and directly affects patient prognosis.
Recent advances in whole slide imaging (WSI) technology [10] have enabled the
development of machine learning models capable of classifying malignant lym-
phoma subtypes from a WSI. However, to incorporate a model into actual clinical
practice, it must not only achieve high diagnostic accuracy but also provide a
reliable explanation for its decisions.

Approaches that mimic the diagnostic processes employed by pathologists are
viewed as beneficial for attaining high classification accuracy and reliable expla-
nations. Pathologists diagnose lymphoma subtypes by investigating H&E-stained
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Fig. 1. Left to right: DLBCL, FL, and Reactive case, and each subtype’s characteristic
cells, LBC, CC, and RM. Red lines indicate ROIs, and green and red lines in Reactive
and FL, respectively, indicate follicles. Heat maps indicate the spatial distribution of
each subtype’s number of characteristic cells in a 512x512 pixels at 40x magnification.

slide specimens. They concentrate on local regions of interest (ROIs), which vary
for each subtype, and analyze the characteristics, frequency, and spatial distri-
bution of each cell type within these ROIs. During diagnosis, pathologists utilize
not only cell-based features but also visual information from pathological images
to understand the broader tissue architecture.

As examples, we explain using three clinically important subtypes that we
address in this research: diffuse large B-cell lymphoma (DLBCL), follicular lym-
phoma (FL), and reactive lymphoid hyperplasia (Reactive). Figure [1| shows, for
each subtype, a representative case along with its ROIs, cells corresponding to
the subtype, and the distribution of these cells’ counts across the WSI. ROIs of
DLBCL show a high frequency of large B-cells (LBCs). ROIs of FL are inside
nearly round structures called follicles, where specific cell types such as central
cells (CC) overabundantly exist. ROIs of Reactive extend within and between
follicles, and many round-medium cells (RMs) are observed, especially near the
follicular boundaries. As Fig. [I| indicates, the distribution of cell types charac-
teristic of each subtype is observed only when ROIs specific to that subtype can
be properly determined.

Consequently, an explainable malignant lymphoma classification model must
be able to (1) identify appropriate ROIs for each subtype, (2) explain the fre-
quency and spatial distribution of characteristic cell types, and (3) achieve high-
accuracy subtyping by leveraging both image and cell distribution modalities.
Cell-level explanations (2) rely on accurately identifying subtype-specific ROIs
(1), while the correct determination of ROIs is contingent on understanding cell-
type distributions and sustaining overall classification accuracy (3). Therefore,
our goal is to integrate all three capabilities simultaneously and accomplish a
reliable and explainable subtype classification of malignant lymphomas.

1.1 Related Works

WHSI is a gigapixel-scale image that cannot be directly processed by machine
learning due to memory constraints. Multiple Instance Learning (MIL) [17]
addresses this by partitioning WSIs into a set (called bag) of smaller patches
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(called instances). To indicate ROIs in a WSI, attention-based MILs (ABMILSs)
[26/1323] highlight important regions but provide only a single attention score.
This is insufficient for lymphoma subtyping, where different regions are impor-
tant for different subtypes. AdditiveMIL [I5] can be a solution to this situation
by providing attention scores of instances for each subtype, clarifying the contri-
bution of each instance to the subtyping result. One limitation of these is that
they rely solely on image features without explicitly utilizing cell information.

Cell graphs, where nodes denote cells and edges denote cell adjacencies, ef-
fectively capture spatial cell distribution in pathological images. They can be
encoded into feature vectors by graph neural networks to classify subtypes and
grades investigated in [TI2IT6ITATI22]2428]. For instance, HACT-Net [22] intro-
duced hierarchical cell graphs to deal with cell- and tissue-level graph structures.
In [T4], a post-hoc explainable method was proposed to show morphological at-
tributes of cells important for prediction. However, these methods are designed
for pre-defined and small-scale ROIs rather than WSI-scale, limiting their abil-
ity to (1) discover local ROIs specific to the assumed subtype in a WSI and (2)
utilize cell graphs for subtyping and explanation across the discovered ROlIs.

These limitations are interdependent in malignant lymphoma subtyping and
cannot be solved by simply applying existing methods.

1.2 Contributions

To resolve these problems, a multi-modal MIL-based model utilizing both image
and cell graphs is seen as effective. Our contributions are summarized as follows:

— We propose an explainable classification framework for malignant lymphoma
WSIs that indicates localized ROIs through class-wise importance per patch
and demonstrates the frequency and spatial distribution of characteristic
cell types. Experiments confirm that our framework provides region- and
cell-level explanations that are well-aligned with a pathologist’s view.

— To achieve high accuracy, we propose a new multi-modal fusion method,
Weak-Expert-based Gating Mixture-of-Experts (WEG-MoE), which fuses
cell graph and image features for each patch. Our method achieves state-of-
the-art accuracy compared to ten other methods in classifying three major
lymphoma subtypes using our 1,233 WSIs dataset.

— According to our investigation, 16 computational pathology studies utilize
cell graphs, yet none of them address malignant lymphoma. Our work is,
therefore, the first to apply cell graphs specifically to malignant lymphoma.

2 Methodology

We treat each WSI of lymph node tissue as a bag comprising multiple instances
(patches). Let n € {1,..., N} be an index of bags (WSIs), m € {1,..., M} an
index of instances in a bag, X,, ,,, be the m-th image instance in the n-th bag,
and y,, €{0, 1} be the n-th one-hot label over the K =3 subtypes, i.e., DLBCL,
FL, and Reactive. Here, we define X, ={X,,m}*_, € X as the n-th image bag,
where X is a space of image bags. Then the n-th bag is defined by B,, = (Xn, yn)
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Fig. 2. (A) Annotations on a t-SNE map to label cells with LBC, CC, RM, or others.
(B) Example of a cell graph to be constructed. The nodes’ colors indicate the cell types.
(C) An overview of our method, WEG-MOoE, for classifying the n-th WSL.

2.1 Labeled Cell Graph Construction

We construct a labeled cell graph G, ,, with cells in X, ,,, where each node
label represents a corresponding cell’s type. For cell labeling, we combine cell
segmentation using HoVerNet [9] pre-trained on CoNSep [9] with a cell classifier.
To train the cell classifier, as Fig. A) shows, we construct the training dataset
by having a pathologist label cell types (LBC, CC, RM, and others) on a 2D
t-SNE map. The t-SNE map is created from segmented cells’ feature vectors,
encoded by ImageNet [12] pre-trained ResNet34 [7]. Identifying LBC, CC, and
RM with high recall is crucial for lymphoma subtyping. Thus, we employed
CAMRI loss [20] as the loss function, which enables the classifier to maintain
relatively high recall for these three classes while preserving overall accuracy.
Finally, we get the labeled cell graph G, . = (Vi Enmy Ln,m) correspond-
ing to X, », like Fig. (E’»)7 where V,, ,, is the set of cell indices, E,, ,, is the set
of edges connecting cells within radius r to reflect the spatial density of cells
(r =60 in our setting), and L, ., is the set of corresponding cell labels. Let
Gpn={Gpnm}M_,, then we reformulate the n-th WSI bag by B, = (X,,, Gp, yn).

2.2 MoE-based Multimodal MIL

As we stated in Sec. [T} the frequency and spatial distribution of specific cell
types are crucial for subtyping lymphoma. While labeled cell graphs provide
this information, they lack visual elements like cell texture and tissue archi-
tecture in pathological images. Then, combining cell graphs with image fea-
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tures is essential for accurate and explainable subtyping. Therefore, for an input
B, = (Xm Gn, yn), we develop an explainable multi-modal classification model
utilizing both graphs and images to achieve high classification performance.

Pretraining AdditiveMIL for Two Modalities. To capture ROIs with dif-
ferent features for each subtype, as we stated in Sec. [T} we adopt AdditiveMIL
[15]. We first introduce AdditiveMIL, where only a single modality (cell graph
or image patch) is available. Let fo and fx be MIL models for cell graphs and
images, respectively, ¢g : G — R? be a feature extractor (e.g., GIN [27]) of fg,
and ¢x : X —R? be a feature extractor (e.g., UNI [4]) of fx. Given an instance
(Xn,m,Gn,m) in a bag B,,, these models produce d-dimensional latent features:

h{G) = Ac(0cGn), - 06 G, RS = Ax(6x(Xn 1) - - ,0x(Xnag)), , (1)

where Ag, Ax : RM*d 5 RMX4 are self-attention modules (e.g., TransMIL [23]).
After each hg;,)m is mapped to a K-dimensional logit via g, ¥x : R* — RE
which are learnable functions (e.g., multilayer perceptrons (MLPs)), finally, we
obtain the bag-level class probability:

P&, =va(hC)), P =vx(h(X), (2)

M M
9@ = softmax(}" " o(plG))), 959 =softmax(}" " a(p}))), (3)

where o is a sigmoid function to stabilize learning in our case (optional), and
softmax is a softmax function. Here, the j-th element of p;:?m represents the
importance of the m-th instance, assuming the prediction result is the j-th class.
Because yfg) is given as an addition of the class-wise attention score p%',)m, the
impact of each instance on the classification can be obtained for each class. fg

and fx are pre-trained independently using cross-entropy loss e(gﬁl ), Yn)-

Weak-Expert-based Gating MoE. To combine cell graph and image modal-
ities, we employ an MoE-based approach. First, we introduce a naive MoE. Let
g:R21-0,1])? be a gating function, and the bag-level prediction by MoE is

M
glmoe) — softmax(z:m:1 w,(IGT)n pfﬁ% + wn)fm pﬁLX,,)l), (4)
[wﬁlGn)l, wﬁan)I] = softmax(g(cat[hf%, h;X,,)L])), (5)

where cat|[-, -] is a concatenation of two vectors. Each w('?m, in Eq. and Eq.
can be interpreted as how much each modality contributes to the m-th instance
in the n-th bag. g allows the model to combine cell graph and image modalities
adaptively, considering the contributions of both modalities.

Each modality, i.e., image (ResNet50, UNI2) and graph (GIN), shows decent
classification accuracy as shown in Tab. [l and the naive MoE simply fuses them
without considering modality differences. However, the naive MoE actually tends
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to ignore the graph modality, possibly because the image modality contributes to
achieving loss minimization more rapidly. To better utilize both modalities while
preserving explainability, we propose Weak-Expert-based Gating MoE (WEG-
MoE), shown in Fig. C). WEG-MoE gates each modality using only the weaker
modality (i.e., graph), which typically shows lower accuracy. Let g:R?—[0,1]2
be WEG-MoE’s gating function. The bag-level prediction by WEG-MOokE is

M

gy = softmax(Y | wiS) pi) + 0 p),  (6)
where [wﬁ%,wﬁfn{] = Softmax(g(hgf'%)). (7)

During training, after independently pre-training each modality model fs and
fx, we force pﬁfﬁ% = 0 and optimize only g’s parameters. In this way, WEG-
MoE determines whether the graph modality is useful for each patch and uses

the image modality as necessary.

3 Experiments

Requirement for the explainable lymphoma subtyping is to simultaneously ad-
dress (1) accurate classification of multiple subtypes, (2) identification of subtype-
specific ROIs within a WSI, and (3) capture the spatial distribution of charac-
teristic cells present in the ROIs. In this section, we show that our approach
meets the requirement.

3.1 Experiment Setup

Because public datasets have only a single subtype label [25I8] or ROIs without
full WSIs [21], these datasets are unsuitable for evaluation based on the require-
ment as mentioned above. Then, we constructed a private dataset comprising
1,233 lymphoma WSIs diagnosed at Kurume University, with labels of DLBCL,
FL, and Reactive subtypes (411 per subtype). For training the cell classifier,
237,544 cell images were carefully selected to prevent test data leakage. Anno-
tation of cell labels by a pathologist was completed in a few minutes using the
annotation method introduced in Sec. 2.1} Each patch was clipped at 512x512
pixels from a non-background area and selected if it had at least 100 cells.

We compared the performance of our WEG-MoE with several baselines. Uni-
modal baselines included ResNet50 [12], UNI2 [4], GIN [27], and HACT-Net [22].
Multi-modal baselines included concat [I8], Pathomic Fusion [5], MCAT [6], mu-
tual attention [3], and MoE [I1]]. To adapt all cases to MIL, AdditiveMIL [15] and
TransMIL [23] served as (fx,Ax) and (fg,Aq), respectively. In AdditiveMIL, ¢ x
and ¥ were three fully connected (FC) layers with ReLU activation. In UNI2, an
FC layer followed UNI2’s feature extractor, and only this FC layer was trained.
In GIN, the feature extractor consisted of four GIN layers. In HACT-Net, we
used deep features as node features, following [22]. In multi-modal baselines,

UNI2 was ¢x, and GIN was ¢g, and h%Xn)l and hfyzl with latent dimension
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Table 1. Mean and standard deviation across five cross-validation sets: accuracy, each
class AUC, and mean AUC. The table is divided into image modality, graph modality,
and multi-modality sections by lines from the top. Best performance is in bold.

Method [ Accuracy [DLBCL AUC[ FL AUC [Reactive AUC[ AUC mean

ResNet50[12] 0.842 + 0.032|0.956 + 0.022 {0.870 4+ 0.059 | 0.973 £ 0.016 | 0.933 £ 0.045
UNI2[4] 0.904 4+ 0.014{0.980 £+ 0.010 | 0.948 + 0.015| 0.988 £+ 0.010 | 0.972 £ 0.017
GIN|27] 0.829 £+ 0.019{0.964 £ 0.012 | 0.807 = 0.047| 0.916 £ 0.025 [ 0.896 £ 0.065
HACT-Net|22] 0.761 4 0.077|0.957 £ 0.022 | 0.856 =+ 0.045| 0.943 £ 0.023 | 0.919 £ 0.045
concat|18| 0.907 + 0.012|0.980 + 0.011 [0.954 + 0.002 |0.98940.008|0.975 + 0.015
Pathomic Fusion[5]|0.902 £+ 0.015|0.975 4+ 0.017|0.949 + 0.016 | 0.986 £ 0.012 | 0.970 &+ 0.015
MCAT g2i[6] 0.901 £+ 0.011{0.973 £ 0.010 | 0.953 + 0.013| 0.988 £ 0.004 [0.971 £ 0.014
MCAT i2g[6] 0.881 +0.019{0.975 £ 0.013 | 0.951 £ 0.015| 0.986 £ 0.006 |0.971 £ 0.015
mutual attention[3]|0.906 4+ 0.018|0.972 + 0.017|0.956 4 0.008 | 0.987 + 0.007 | 0.972 + 0.013
MoE[IT] 0.907 £ 0.012|0.977 + 0.013|0.951 4+ 0.016 | 0.988 £+ 0.010 | 0.972 £ 0.015
WEG-MoE (ours) |0.91140.011|0.98340.009|0.961+0.011| 0.988 & 0.010 |0.977+0.012

d =256 were fused. In Pathomic Fusion, we reduced the feature dimension to 48
before the direct product. In MCAT, we employed two flows to handle its di-
rectional attention flow: graph-to-image (g2i) and image-to-graph (i2g). In MoE
and WEG-MOoE, g and g were three FC layers with ReLU activation.

We used ten NVIDIA A100 80GB GPUs. In WEG-MoE, we processed ten
WSIs simultaneously in parallel, taking approximately one hour in total from
WSI scanning to test prediction. Our implementation is publicly availableﬂ

3.2 Results

Table [I] shows classification performance. We can see that WEG-MoE outper-
forms the others in classification performance. Especially since WEG-MoE out-
performs MoE, we can confirm the effectiveness of WEG-MoE’s gating strategy.
Figure[3|shows explainability results with a representative case: (A) class-wise
attention of each subtype, (B) frequency by cell type, and (C) frequency of cell
adjacency. (B) and (C) are computed from high-attention regions (top 25%).
Dotted lines show distribution within pathologist-supervised ROIs. Below, we
contrast what the pathologist expects with explanations by our framework.
DLBCL. Expectation: DLBCL has spread lesions with increased and dif-
fusely distributed LBCs. Attention: Figure [3{A-1) shows higher attention for
DLBCL overall than other subtypes, reflecting that LBCs are diffusely dis-
tributed overall. Cell frequency: Figure B—l) indicates increased LBCs com-
pared to other subtypes. Cell distribution: LBCs in DLBCL are adjacent to a
greater variety of cells than in Reactive (Fig. (C-1) vs (C-2)). Validity: These
results are consistent with the expectation, and the distribution of LBC is close
to it in the supervised ROI, so they are aligned with the pathologist’s view.
FL. Expectation: FL lesions are follicles with densely packed cells and nu-
merous CCs. Attention: In specific regions, Fig. (A—2) shows higher attention

5 |https://github.com/mdl-lab/Explainable- Malignant-Lymphoma-Classifier
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Fig. 3. (A) Class-wise attention, where higher attention is red, and lower is blue. (B)
Frequency by cell types. (C) Frequency of adjacency between cell types. In (B) and
(C), the black dotted lines present the results computed with the ROI supervised by a
pathologist, which can be interpreted as the ground truth, and the orange dotted lines
present the median of the distribution. In (C), for example, “LBC—CC” indicates the
number of CCs that are connected by edges to LBC. Each data in (B) and (C) is from
the top 25% of instance-level class-wise attention scores for the correct class.

for FL, while it is lower for Reactive and DLBCL. Cell frequency: Figure B—
2) indicates increased CCs compared to other subtypes. Cell distribution:
The number of CCs adjacent to various cells in FL (Fig. [3(C-3)) exceeds those
in Reactive (Fig.[3(C-4)). Validity: These results indicate that the follicles show
attention and have the characteristics of FL rather than Reactive, so they are
aligned with the pathologist’s view.

Reactive. Expectation: Reactive tissue shows normal follicular structure
and inter-follicular tissue throughout, with RM often at follicle boundaries. At-
tention: Figure A-3) shows high attention for Reactive overall, with locally
high FL attention in the lower part. Cell frequency: Reactive shows fewer
LBCs than DLBCL (Fig. [3(B-3) vs (B-1)) and fewer CCs, RMs, and other cells
than FL (Fig. B(B-3) vs (B-2)). Cell distribution: Reactive shows fewer cell
adjacencies for both LBCs and CCs compared to DLBCL and FL, respectively.
Validity: Areas with high FL attention appear as FL to pathologists, while other
regions display Reactive characteristics rather than malignant patterns, validat-
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ing the model’s attention allocation. Due to the Reactive ROIs covering areas
both within and outside follicles, it can not be observed that the RM frequency
is high at follicular borders. When comparing cell distributions, the Reactive
case displays non-malignant patterns distinct from DLBCL and FL. These pat-
terns closely match the distribution in pathologist-identified ROIs, confirming
the overall appropriateness of the model’s interpretations.

4 Conclusion

We proposed an explainable multi-modal MIL framework for the subtyping
of malignant lymphoma. This framework can explain not only localized ROIs
through class-wise attention but also the frequency and spatial distribution of
characteristic cell types based on the labeled cell graph. Our experiments con-
firmed the appropriateness of these explanations based on the pathologist’s as-
sessment and showed state-of-the-art classification performance.
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