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Abstract. Accelerated MRI reconstruction has garnered increasing at-
tention due to its significant clinical value. Recently, the exceptional
capabilities of diffusion models in image generation have led to their
widespread application in accelerated MRI reconstruction. However, the
inherent noisy diffusion process in these models introduces uncertainty
during the reverse diffusion restoration, which can compromise the con-
sistency of the results. Moreover, adding Gaussian noise contradicts the
actual MRI imaging process. To address these issues, we propose Fil-
terDiff, a noise-free frequency-domain diffusion framework. In FilterDiff,
the diffusion process is modeled as a filtering operation, similar to the
MRI acquisition process, thereby eliminating the dependence on noise
and simplifying the diffusion procedure. To better capture frequency-
domain long-range information, we proposed a Swin-DiTs network, which
modifies the DiT transformer network by replacing the self-attention
mechanism with Swin-attention to reduce computational cost, and re-
moving the position embedding to mitigate feature artifacts. Extensive
experiments on two public datasets demonstrate that our model achieves
state-of-the-art performance in accelerated MRI reconstruction, both in
in-distribution and out-of-distribution scenarios.

Keywords: MRI Reconstruction · Noise-free Diffusion · Filter

1 Introduction

Accelerated MRI reconstruction has become a important issue due to its sig-
nificant clinical application value. Recent years have witnessed considerable ad-
vancements in data-driven methods [20,11,13,12,6,10,15,4,23,5,21]. Deep neural
network models have proven effective in learning the distribution transforma-
tion between under-sampled and fully-sampled images (or k-space). Compared
to traditional techniques, these models not only enhance the quality of the recon-
structed images but also provide the added benefit of enabling real-time imaging.

Diffusion models, known for their high-fidelity generation capabilities, have
garnered widespread application in accelerated MRI reconstruction in recent
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years. Peng et al. [18] introduced an unconditional diffusion model trained to
generate coil-combined MRI images derived from fully-sampled data. Gungor et
al. [7] proposed a conditional diffusion model for accelerated MRI reconstruc-
tion based on adaptive diffusion priors. To exploit the invariance of the sampled
frequency region in k-space during accelerated sampling, [3,22] present a condi-
tional diffusion model that focuses on the diffusion of non-sampled frequencies.
In [16], these authors developed a diffusion process in the frequency domain by
employing a circular mask-based filter and introducing noise outside the filtered
region, thereby combining two degradation mechanisms: filtering and noise ad-
dition. Additionally, [19] proposed a bridge diffusion model, where the diffusion
process initiates from a fully-sampled image and terminates at an under-sampled
image, with Gaussian noise added exclusively to the intermediate state images.

Although diffusion models in accelerated MRI reconstruction have started
incorporating acquisition priors and imaging knowledge, they still often rely on
degradation methods that involve adding noise to construct the diffusion pro-
cess. These methods conflict with the actual MRI imaging procedure. Moreover,
noise-based diffusion introduces uncertainty during the inverse sampling process,
which leads to variability in the generated results. In contrast, medical image
generation requires a highly precise and deterministic process, distinct from the
diversity sought in natural image generation. Recently, ColdDiff [2], a general
degradation diffusion model, was proposed in the natural image domain. This
model allows the construction of the diffusion process to move beyond the sole
reliance on noise addition, incorporating other forms of degradation such as blur-
ring, snow and pixelation, etc. In the context of accelerated MRI acquisition in
Cartesian coordinates, the acquisition prioritizes dense sampling of the center in
the phase-encode direction while sparsely sampling the peripheral non-central
regions to preserve significant information. Therefore, the variation in the size of
the sampling width in the phase-encode direction (also referred to as the filter
in the phase-encode direction) can be regarded as a form of frequency-domain
degradation. Although the method proposed by Huang et al. [9] incorporates the
sampling mask during the forward diffusion process, it ultimately degrades to
a highly corrupted k-space rather than an under-sampled one. Moreover, both
the reverse diffusion sampling and the network training in their approach are
conducted in the image space, rather than directly in the k-space domain.

Inspired by the MRI acquisition process, we propose a noise-free diffusion
model in the frequency domain, named FilterDiff. Unlike traditional diffusion
models, which rely on noise addition, FilterDiff employs a deterministic diffusion
process, ensuring that no uncertainty factors arise during the reverse process.
As a result, the images generated through multiple iterations of reverse diffusion
remain consistent. Specifically, we define the initial state of the forward process
as the fully-sampled k-space data, while the terminal state is the under-sampled
k-space data obtained through central sampling using a mask filter. To mitigate
the loss of information from non-central regions, the original under-sampled k-
space data serves as conditional input. The intermediate states consist of under-
sampled k-space data filtered with varying widths of the central sampling mask.



FilterDiff for Accelerated MRI Reconstruction 3

During the reverse diffusion process, the initial under-sampled k-space data,
filtered with the central mask, is progressively predicted outward in a step-by-
step manner, ultimately restoring it to fully sampled k-space data.

To further enhance the reconstruction capability of FilterDiff, we modify
a pure transformer Swin-DiTs network based on DiT [17], replacing the self-
attention mechanism with Swin-attention [14] and removing the position em-
bedding to reduce feature artifacts. This modified architecture serves as our
restoration network. Extensive experiments on publicly available datasets, such
as fastMRI [25] and IXI [1], demonstrate that our model achieves state-of-the-art
performance in both in-distribution and out-of-distribution scenarios.

Fig. 1. Overview of the proposed FilterDiff for accelerated MRI reconstruction.

2 Background

2.1 Cold Diffusion

The Cold Diffusion Model is a generalized diffusion model [2], which extends the
traditional noise-based diffusion to any type of degradation, such as blurring,
snow and pixelation, etc. Specifically, given an image x0 from the training data
distribution Q, the image x0 is gradually degraded using a custom degradation
operator D(·) into an image xT sampled from a random initial distribution P ,
where T is the total number of diffusion time steps. The intermediate state image
xt in the diffusion process is then defined as xt = D(x0,xT , t). In accelerated
MRI reconstruction, adding noise is the most commonly used degradation oper-
ator. If a noise-adding diffusion process is employed, the forward process in the
Cold Diffusion Model can be defined as:

xt = D(x0,xT , t) =
√
αtx0 +

√
(1− αt)xT , (1)
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where xT is random noise with specific distribution. In the reverse process, we
need a restoration operator R(·) to approximate the inverse of the degradation
operator D(·). This restoration operator can be expressed as:

x0 = R(xt, t) ≈ x0, (2)

where R(·) is a neural network parameterized by θ, which can be optimized by
the following objective function:

min
θ

Ex0∼Q,xT∼P ∥Rθ(D(x0,xT , t), t)− x0∥. (3)

After obtaining the trained restoration operator R(·), the restoration process in
its inverse diffusion process is given by the following formula:

xt−1 = xt −D(x0,xT , t) +D(x0,xT , t− 1), (4)

where xT =
(
xt −

√
αtx0

)
/
√

(1− αt). Although ColdDiff[2] is a generalized
diffusion method in the image domain, the exploration of frequency-domain
degradation operators in accelerated MRI reconstruction tasks has not been
conducted.

2.2 Under-sampled MRI Reconstruction

Typically, under-sampled MRI reconstruction can be formulated as the following
equation:

yM = MAx+ ϵ, (5)

where x ∈ Rn represents an MRI image, yM ∈ Rm (m < n) is the under-sampled
k-space measurements, A ∈ Rn×n is the measuring matrix, M ∈ Rm×n is the
under-sampling matrix with the specific sampling pattern, and ϵ is the noise.
Typically, the sampling pattern of M is performed in the Cartesian coordinate
system, where the sampling ensures dense full-frequency acquisition along the
central part of the phase-encode direction (the x-axis) to minimize information
loss, denoted as Mcore ∈ Rm×n. The non-central part of the phase-encode direc-
tion is sampled with sparse full-frequency acquisition (usually using equidistant
or random sampling) and is denoted as Mother ∈ Rm×n. The elements of matrix
M are either 0 or 1, where 0 represents positions that are not sampled, and 1
represents positions that are sampled. Therefore, M = M core +Mother.

3 Method: FilterDiff

Previous diffusion-based accelerated MRI reconstruction methods [3,22,19] typi-
cally describe the diffusion process as the addition of Gaussian noise and use the
under-sampled image (or k-space) as a condition for predicting the correspond-
ing fully-sampled image (or k-space). However, it is important to note that the
statistical characteristics of noise in MRI images (or k-space) are complex and
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Algorithm 1 Training for FilterDiff

1: Input: Paired fully-sampled/under-sampled k-space sets I = {(k0,kT )i}Ni=1, total
time steps T

2: Output: Trained Restoration Net Rθ

3: Initialization: Randomly initializes Restoration Net Rθ

4: repeat
5: Sample Paired k-space data (k0,kT ) ∼ I
6: Sample Timestep t ∼ Uniform(1, ..., T )
7: Calculate kt by Eq. (6)
8: ∆kt ←Rθ(Mt,kt,kc, t)
9: Update θ by Eq. (8)
10: until converged

cannot be simply modeled using a Gaussian distribution. Moreover, perform-
ing diffusion based on noise deviates from the actual physical process of MRI
acquisition and reconstruction.

Instead, the variation in the sampling matrix M of k-space inherently in-
troduces a degradation process, which can be interpreted as a form of filter-
ing diffusion in k-space. Based on this observation, we propose FilterDiff in
k-space. Specifically, we define the fully sampled k-space data as k0 and the
under-sampled k-space data as kT . To ensure that the diffusion process accu-
rately mimics the physical degradation process of MRI k-space, we introduce a
novel degradation operator D(·), defined as follows:

kt = D(k0,Mt) = Mt ∗ k0, (6)

where M t is an intermediate state between M0 and MT . Here, M0 represents
an identity matrix, and MT corresponds to M core. This degradation operator
simulates degradation in k-space in the form of filtering, and thus, we refer to
it as the k-space filter degradation operator. Typically, both Cold Diffusion [2]
and classical Gaussian diffusion models [22,3], begin their sampling process from
random Gaussian noise, gradually reducing noise levels until generating x0(or
k0). As a result, they require a large number of sampling steps to transform an
image with a similar noise level into an under-sampled image (or k-space) that
retains meaningful semantic information.

It is important to note that, in our proposed diffusion model, the endpoint
of the diffusion process is the under-sampled k-space, which does not consist
entirely of pure Gaussian noise nor contain partial Gaussian noise. Therefore,
we can directly sample from the under-sampled k-space using a smaller T , while
our proposed diffusion model eliminates the randomness introduced by Gaus-
sian noise. Consequently, multiple repeated samplings yield identical and fully
reproducible k0 values. This characteristic is critical for real-world applications in
accelerated MRI reconstruction-based medical imaging diagnostics, ensuring sta-
bility and consistency in clinical settings. In the reverse process, we constructed
a new restoration operator Rθ(·) to approximate the inverse of the degradation
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Algorithm 2 Reverse Process for FilterDiff

1: Input: under-sampled k-space data sets (kc,kT ,MT ), where kT can be computed
from kc and MT

2: Output: Generated k-space data k0

3: Load the trained Restoration Net Rθ

4: for t = T, T − 1, . . . , 1 do
5: ∆kt ← Rθ(Mt,kt,kc, t)
6: Calculate kt−1 by Eq. (9)
7: end for

operator D(·). This restoration operator can be expressed as follows:

∆kt−1 = Rθ(Cond) = ∆M t−1 ∗ FFT (ϕθ(Cond)) ≈ ∆M t−1 ∗ k0, (7)

where Cond represents (Mt−1,kt−1,kc, t), kc represents the under-sampled k-
space data, FFT represents the Fourier transform, ϕ represents a neural network
with parameters θ. And ∆kt−1 represents the predicted difference between kt

and kt−1, and ∆M t−1 = Mt−1−Mt represents the difference between Mt and
Mt−1. Thus, the Rθ can be optimized using the following objective function:

min
θ

E{∥Rθ(Mt,kt,kc, t)−∆kt−1∥+ λ∥ϕθ(Mt,kt,kc, t)− x0∥}. (8)

Once the restoration operator Rθ(·) is trained, the restoration process initiates
the inverse diffusion process, which is given by the following formula:

kt−1 = kt +Rθ(Mt,kt,kc, t) = kt +∆kt. (9)

Fig. 2. (a) Different filter shapes and (b) The trend of the filter variation across different
time steps.

The Fig. 1 provides a detailed illustration of the restoration process. Finally,
the training and restoration procedures are shown in Algs. 1 and 2, respectively.
Regarding the network architecture, we modify the original DiT [17] framework
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to a Swin-DiTs architecture. Since the original DiT [17] is designed for the la-
tent space, directly applying it to images results in high computational costs due
to the self-attention mechanism. To address this issue, we replace self-attention
with Swin-attention [14]. Additionally, inspired by [24], where position embed-
ding introduces feature artifacts in transformer-based architectures, we remove
position embedding in our design, as illustrated in Fig. 1.

4 Experimental Results

Data and Implementation Details. The experiments were conducted on the
public fastMRI [25] and IXI datasets [1]. Fellowing [19] setting, for the fastMRI
dataset, 360 individuals from knee dataset were selected for training, 8 for vali-
dation, and 20 for testing. Additionally, 20 individuals in brain dataset were used
as an out-of-distribution set. And for the IXI dataset, 577 individuals’ T1 images
were split into training (500 individuals), validation (37 individuals), and test
(40 individuals) sets. K-space under-sampled was simulated with equally spaced
Cartesian under-sampled in the phase-encode direction, with acceleration fac-
tors of 4 and 8. For training, 200k iterations were performed using the AdamW
optimizer, a learning rate of 1× 10−4, and a batch size of 8. For our FilterDiff,
both training and restoration steps were set to 20, with a loss weight λ = 1. All
experiments were conducted using 4 NVIDIA GeForce RTX 4090 GPUs.

Table 1. Comparison of methods in fastMRI and IXI experiments.

knee(in-distribution) brain(out-of-distribution) IXI(in-distribution)

factor Method PSNR(dB) SSIM(%) PSNR(dB) SSIM(%) PSNR(dB) SSIM(%)

4×

DDPM[8] 32.78±2.87 86.84±8.06 29.71±1.85 90.38±2.11 32.70±2.77 95.32±2.10
AdaDiff[7] 28.16±1.94 78.77±5.03 24.93±1.30 81.21±3.07 25.84±1.28 80.09±3.71
HFS-SDE[3] 30.70±2.10 82.19±5.36 26.03±1.35 79.69±3.58 30.76±2.80 89.22±2.15
FDB[16] 31.68±2.33 82.99±4.17 27.10±1.41 80.36±3.40 31.89±3.10 90.02±2.08

MC-DDPM[22] 33.84±3.38 88.24±3.57 29.93±1.76 90.47±2.14 36.20±3.11 97.49±1.31
CBDM[19] 34.84±2.54 89.73±6.20 30.67±1.71 91.97±1.42 37.56±3.07 98.10±1.02

Ours 37.65±3.01 93.69±1.22 33.68±1.56 94.78±1.22 40.76±3.77 98.38±0.87

8×

DDPM[8] 30.36±2.79 81.45±9.06 27.47±1.30 86.93±2.23 32.56±2.72 95.02±2.21
AdaDiff[7] 28.85±2.15 77.53±6.15 25.67±1.37 80.08±3.13 23.74±1.05 75.45±3.87
HFS-SDE[3] 28.14±2.03 75.52±5.20 24.81±1.39 73.87±4.14 30.47±2.46 92.96±2.27
FDB[16] 28.93±2.19 76.34±5.30 25.84±1.33 74.06±4.01 31.01±2.55 93.64±2.36

MC-DDPM[22] 31.30±2.45 84.58±5.84 26.10±2.21 82.52±3.56 35.53±2.96 97.04±1.53
CBDM[19] 32.80±2.20 85.83±6.97 28.65±1.24 89.02±1.94 37.09±2.96 97.70±1.15

Ours 34.20±2.49 88.04±5.19 31.62±1.65 91.80±1.74 39.21±3.53 97.82±1.03

Results Analysis. Our FilterDiff is compared with multiple diffusion models in
terms of generation quality. As shown in Tab. 1, under equally spaced Cartesian
under-sampling with acceleration factors of 4 and 8, our FilterDiff consistently
outperforms all other methods both in-distribution and out-of-distribution of
the fastMRI dataset and in-distribution of the IXI dataset in terms of PSNR
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and SSIM metrics. Compared to the advanced diffusion model CBDM [19], our
method achieves an increase of approximately 3.0 dB in PSNR and an increase
of approximately 4% in SSIM. These results demonstrate that our method sig-
nificantly enhances the performance and generalization of advanced noise-based
diffusion models.

Table 2. Ablation studies of our FilterDiff.

Filter Shape Filter Variation Network Metrics

Rectangle Square Linear Sparse Dense Swin-DiTs PSNR(dB) SSIM(%)

✓ ✓ ✓ 37.53±3.05 93.66±1.25

✓ ✓ ✓ 33.20±2.55 86.78±5.43

✓ ✓ ✓ 37.65±3.01 93.69±1.22

✓ ✓ ✓ 37.24±2.96 93.26±3.34

✓ ✓ ✓ 37.65±3.01 93.69±1.22

✓ ✓ 37.01±2.43 93.03±2.96

✓ ✓ ✓ 37.65±3.01 93.69±1.22

Fig. 3. Accelerated MRI reconstructions with different methods.

For the ablation study, we conducted experiments exclusively on images with
4x acceleration using the equally spaced Cartesian under-sampling method. As
illustrated in Tab. 2 and Fig. 2, we first investigated the impact of filter variations
across different time steps and filter shapes. The results indicate that the dense
mode with a rectangular filter achieves the best performance, suggesting that
information in the central region is more critical. Additionally, the rectangular
mask outperforms the square mask as a filter, which aligns with the principles
of MRI data acquisition. Furthermore, we replaced the Swin-DiTs network with
ResUnet [19] from other diffusion models and observed that Swin-DiTs provides
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an improvement of approximately 0.6 dB in reconstruction performance. This
demonstrates that Swin-DiTs effectively captures long-range relationships in the
frequency domain. Finally, we visualized the reconstruction effects of different
methods, as shown in Fig. 3. In terms of specific reconstruction details, our
FilterDiff surpasses other diffusion models.

5 Conclusion

In this paper, we propose FilterDiff, a novel noise-free frequency-domain dif-
fusion model designed for accelerated MRI reconstruction. Unlike traditional
diffusion models that rely on stochastic noise addition, FilterDiff employs a de-
terministic diffusion process, ensuring consistent and reliable image generation
through multiple reverse diffusion iterations. By defining the forward process
as a transition from fully-sampled to under-sampled k-space data using a cen-
tral mask filter, the diffusion process becomes independent of noise and better
aligns with the MRI acquisition process. Furthermore, we introduce a modi-
fied Swin-DiTs network, which replaces self-attention with Swin-attention and
removes position embedding to reduce feature artifacts, significantly enhanc-
ing reconstruction performance. Extensive experiments on the fastMRI and IXI
datasets demonstrate that FilterDiff achieves state-of-the-art results in both in-
distribution and out-of-distribution scenarios, highlighting its superior perfor-
mance and generalization capability.
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