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Abstract. Multi-modal brain networks represent the complex connec-
tivity between different brain regions from both functional and struc-
tural perspectives, which is of great significance for brain disease diag-
nosis. However, existing methods are limited to information fusion in
the feature dimension, failing to fully exploit the complementary infor-
mation between functional and structural connectivity networks. To ad-
dress these issues, this paper proposes a cross-modal brain graph trans-
former (CBGT) method for brain disease diagnosis, which also provides
an in-depth analysis of coupled function-structure connectivity networks.
Specifically, CBGT consists of two main modules: the cross-modal Trans-
former module enhances the attention mechanism by utilizing structural
connectivity features extracted through machine learning methods, cap-
turing long-range dependencies in the cross-modal brain network. The
cross-modal topK pooling module combines information from both func-
tional and structural connectivity networks to select significant regions
of interest (ROIs) during the reconstruction of the pooled graph, aim-
ing to retain as much effective information as possible. Experiments con-
ducted on the ABIDE and ADNI datasets demonstrate that the proposed
method outperforms state-of-the-art approaches. Interpretation analysis
reveals that the proposed method can identify multi-modal biomarkers
associated with brain diseases.
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1 Introduction

The brain network analysis technology based on neuroimaging data facilitates
the exploration of the potential associations between brain function and struc-
ture, which is of great significance for the brain disease diagnosis. Brain networks



2 F. Author et al.

are categorized into functional connectivity networks and structural connectiv-
ity networks. Functional connectivity networks are constructed using signals ex-
tracted through functional magnetic resonance imaging (fMRI) [20], which reflect
the coherence of brain activity across different ROIs. Structural connectivity net-
works are built using fiber tracts measured by diffusion tensor imaging (DTT)
[2], describing the physical neural fiber connections between ROIs.

Previous studies have demonstrated that functional connectivity networks
and structural connectivity networks can provide complementary information to
each other [18]. However, due to the complex interactions between the two types
of brain networks, effectively leveraging complementary information from func-
tional and structural connectivity networks to enhance brain disease diagnostic
performance remains a challenge.

The core of brain disease diagnosis based on brain network analysis lies in
modeling and learning the relationships between brain regions, where extensive
long-range dependencies exist within brain networks [1, 23]. Unlike the local in-
formation propagation mechanism of graph neural networks (GNNs) [4, 24], the
self-attention mechanism in Transformer can effectively capture long-range de-
pendencies between nodes. Recent studies [13, 7, 8] have introduced Transform-
ers into brain network analysis. For instance, the brain network Transformer
(BrainNetTF) [13] utilizes a Transformer encoder to learn node embeddings of
functional connectivity networks and employs an orthogonal clustering readout
method to obtain graph-level representations, achieving promising performance
in brain disease diagnosis tasks. However, such methods overlook the interde-
pendence between functional and structural connectivity networks.

Additionally, existing research has utilized multi-modal information from
functional and structural connectivity networks for disease diagnosis. For ex-
ample, BrainNN [29] treats functional and structural connectivity networks as
multi-view data, extracting features from each using GNNs and employing con-
trastive learning for multi-modal fusion. However, these methods neglect the
supporting role of structural connectivity in functional connectivity and the
widespread long-range dependencies in brain networks.

To address these issues, we propose a cross-modal brain graph Transformer
for brain disease diagnosis tasks. First, we extract important features from the
structural connectivity network using machine learning methods to enhance the
attention mechanism. Secondly, a cross-modal topK pooling method is employed
to retain significant ROIs during dimensionality reduction by considering infor-
mation from both functional and structural connectivity networks. Finally, a
soft-voting strategy is used to integrate the feature representations extracted
from each layer, achieving the final brain disease diagnosis. In summary, this
paper makes three major contributions:

1) We propose a cross-modal brain graph Transformer method that effec-
tively leverages the complementary information from functional and structural
connectivity networks to achieve accurate brain disease diagnosis.

2) We propose a cross-modal Transformer method that utilizes key features
filtered through structural connectivity network as the enhanced mask for atten-
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Fig. 1. The proposed cross-modal brain graph Transformer framework.

tion computation based on functional connectivity network, thereby capturing
the long-range dependencies in cross-modal brain networks.

3) We propose a cross-modal topK pooling method that integrates informa-
tion from functional and structural connectivity networks to retain ROIs critical
for disease prediction. This method reduces graph size while preserving as much
effective information as possible.

2 Method

2.1 Overview

As shown in Fig. 1, the overall framework consists of three components: 1)
Extraction of important structural connectivity features, where XGBoost is used
to extract key structural connectivity features as the enhanced mask for the
initial input to the cross-modal brain graph Transformer. 2) The cross-modal
brain graph Transformer consists of multiple iterative layers, each including the
cross-modal Transformer layer and the cross-modal topK pooling layer. 3) At
the decision layer, a soft voting strategy integrates feature representations from
each layer of the cross-modal brain graph Transformer to achieve a final decision.

2.2 Extraction of Important Structural Connectivity Features

The structural connectivity matrix X, € RV *¥N°can be obtained from DTI
image, where X, (; j) denotes the number of fiber connections between ROISs ¢
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and j. Previous studies have shown that X, (; ;) can range from zero to several
thousand and has a skewed distribution. To make the sample means conform to
a normal distribution, we first use the logarithmic transformation [5] to narrow
down the range of fibre numbers between the two ROIs:

X (i,j) = 10810(Xs (i,5) + 1) (1)
Then we normalize X (; ;):

Xs,(i,j) - (Xs)m

XS,(’i,j) = (XS)S ) (2>

where (X;),, and (Xy)s are the mean and standard deviation of X;. To extract
influential feature information from structural connectivity network, we vectorise
the normalised structural connectivity matrix X. The vectorized network sam-
ples are input into the XGBoost, which calculates the weight of each feature. By
setting a threshold p, unimportant feature information is filtered out. Then, we
reconstruct these filtered features, and the reconstruction matrix is used as the
initial enhanced mask M° € RNY"*N" iy the cross-modal Transformer.

2.3 Cross-modal Brain Graph Transformer

The cross-modal brain graph Transformer consists of two components in each
layer: the cross-modal Transformer layer and the cross-modal topK pooling layer,
which will be introduced in the following two subsections.

Cross-modal Transformer To capture the long-range dependencies based on
structural connectivity in the cross-modal brain network, the proposed cross-
modal Transformer layer applies the enhanced mask during the attention score
computation process. Formally, for the [-th layer of the cross-modal brain graph
Transformer, we utilise the multi-head self-attention module with the enhanced
mask to generate more expressive node features and the output le_l is obtained
by the following equation:

X = (|2, nh) W (3)

.
lz~r1—1 liz~r1—1
WX (WX

Th* = softmax ©@1+MY |, (4)

o
h'* = TWFX,! (5)

where X;‘l € RN'"'XN° denotes the input node feature matrix in the I-th
layer, the initial node feature matrix is the functional connectivity (FC) matrix
X9 € RN**N” obtained by calculating the Pearson correlation coefficient be-
tween ROIs. || denotes the concatenation operator, Z is the number of heads,
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Wi, wh?, Wl}’(z, and Wl‘}z are learnable model parameters, and dlI’(z is the first

dimension of W%?. The matrix M!~1 e RN'7'XN'"" i5 the enhanced mask in
the I-th layer, where the initial mask is M°. The M‘~! is used in the attention
computation process to enhance the attention of each ROI to its structurally
connected neighboring brain regions. The output node features Xifl and the

enhanced mask M!'~! will be input into the cross-modal topK pooling layer.

Cross-modal TopK Pooling Recent findings have shown that some ROIs are
more important than the others in the prediction of brain disease [12, 3]. Thus,
it is crucial to use a node pooling layer to reduce the size of the graph and only
preserve some important nodes. To this end, we propose a cross-modal topK
pooling method that comprehensively evaluates node importance by integrat-
ing cross-modal brain network information, retaining the top & most important
nodes. Specifically, in the cross-modal topK pooling layer of the [-th layer in
the cross-modal brain graph Transformer, we project the enhanced mask M1,
which reflects the filtered structural connectivity information, and the output

node features )Nilf_l, onto learnable vectors w), € RV "' and Wgc € RN 0, respec-

tively. The node importance from the structural and functional perspectives, s}

and s), , can be obtained through the following calculations:

. -1
where || - || is the Ly norm. s} and s}, are concatenated to form S! € RN~ %2,

which is then passed through a single-layer multi-layer perceptron (MLP) to
learn the final score vector S! that reflects the cross-modal importance.

S'=o(S'- W'+ b, (6)

where W' ¢ Rirepresents the learnable weights and b’ € RY o represents the
bias. Based on S', the index vector i for the top k nodes can be selected. Utilizing
these indices, the pooled node features le and the enhanced mask M for the
next layer can be obtained, which can be represented as follows:

i = topk(S', k) (7)

X = (X! @ sigmoid(8"));,, M'=Mi;!, (8)

where © denotes the elementwise product and (-);; is an indexing operation
which takes elements at row indices specified by ¢ and column indices specified
by j (colon denotes all indices).

2.4 Soft Voting for Final Classification Decision

To make a final label prediction, we employ the soft voting strategy at the
decision level. The output node features from each brain graph Transformer layer
are concatenated to obtain the graph-level representation %' for each layer. These
are then input into a MLP, where the classification probabilities p(c) from each
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layer are combined using a soft voting strategy for the final classification. The
calculation formula for soft voting can be expressed with the following equation:

L
P(C) _ Zl:l p (C)’ (9)
L
The probability for each class ¢, P(c), is calculated by averaging the predicted
probabilities from each layer and the predicted class is determined by arg max. P(c).

The whole process is supervised with cross-entropy loss.

3 Experiments

3.1 Dataset

The proposed method is evaluated on two public datasets, Alzheimer’s Disease
Neuroimaging Initiative (ADNTI) [11] and Autism Brain Imaging Data Exchange
(ABIDE) [10]. This study uses a subset of the ADNI with a total of 330 cases,
including 66 AD patients, 125 mild cognitive impairment (MCI) patients, and
139 NCs. Only 95 subjects in ABIDE dataset have both fMRI and DTI data,
including 53 Autism Spectrum Disorder (ASD) patients and 42 normal controls
(NCs). We preprocess the fMRI via DPARSF%, and the DTI via PANDA. The
brain space is parcellated into 90 ROIs based on the AAL atlas [19].

3.2 Experimental Settings

Implement and Evaluation Metrics. Models are implemented in PyTorch
and trained on NVIDIA 3090. Adam optimizer [15] is used with an initial learning
rate of 1 x 10™%. Using grid search, the structural feature selection threshold p
is set to 3, and the optimal number of CBGT layers L is determined to be 2.
Five-fold cross-validation is employed on the dataset, and the proposed method
is evaluated in terms of four metrics: accuracy, sensitivity, specificity, and AUC.
Compared Methods. To verify the effectiveness of our proposed method, we
compare it with BrainGNN [16], BrainIB [28], BrainNetTF [13|, ALTER [26],
SVM [9], GAT |[21], BrainNN [29], MME-GCN [17], Cross-GNN [25].

3.3 Experimental Results and Analysis

Table 1 shows the performance metrics of all methods. The results demonstrate
that our method achieves the highest accuracy across all classification tasks.
In the MCI vs. NC classification task, our method increases the accuracy by
more than 3.9% compared to other cross-modal methods. The primary reason
for these gains is that our approach effectively captures long-range dependencies
in the cross-modal brain network. Meanwhile, the cross-modal topK pooling,
considering node cross-modal importance, preserves essential graph information
and improves diagnostic accuracy.

* http://rfmri.org/DPARSF
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Table 1. Comparative Experiments of Classification Tasks on Different Datasets.

Datasets (Tasks)

ADNI(AD vs. NC)

ADNI(AD vs. MCI)

Modal

Method

ACC (%) SPE (%) SEN (%)

AUC (%)

ACC (%) SPE (%) SEN (%) AUC (%)

fMRI

BrainGNN
BrainIB
BrainNetTF
ALTER

74.64+95 7844938 66.049.38
741193 76.318.6 69.5+£12.6
75.116.1 79.117.6 67.8%13.0
75.644.4 79.0+73 6881141

78.0%6.7
77.346.4
76.315.8
77.116.6

65.545.2
66.5+5.2
67.04+4.4
67.01+4.4

68-7j:6.1
71.247.6
71.216.9
72.847.8

57.549.9
55.0+3.4
59.04+4.3 66.345.2
55.946.4 67.144.2

61.645.4
65.446.0

DTI

SVM
GAT

69.345.7 73.8410.3 55.7+13.2
707444 774482 57.0417.5

68.7+6.0
6911106

602157
63.447.6

65.5+11.5
68.3+9.7

50.3+10.761.04£7.4
51.247.1 62.347.3

Both

BrainNN
MME-GCN
Cross-GNN

Ours

77.612.5 83.8148.3 6341125
77.6+7.8 81.5410.069.7+13.4
78.5+7.9 82.849.5 70.1t13.7
81.54+4.5 86.444.1 7T1.5413.7

77.54+3.0
74.945.5
77.546.1
79.446.7

65.046.5
69.642.8
70.14+5.3
74.34+3.1

70.94+8.4
76.3+4.9
71.94+6.3
80.144.4

51.3+6.0 61.514.0
56.7+8.5 64.116.5
63.4451 70.441.9
6244143711479

Datasets (Tasks)

ADNI(MCI vs. NC)

ABIDE(ASD vs. NC)

Modal

Method

ACC (%) SPE (%) SEN (%)

AUC (%)

ACC (%) SPE (%) SEN (%) AUC (%)

fMRI

BrainGNN
BrainlB
BrainNetTF
ALTER

62.842.4 62.31539 657189
64.742.9 66.4110.0 63.6113.1
65.41+6.8 63.3+85 67.7T47.1
65.5:(:3_0 72.4:(:11_756.2:{:13_6

65.346.1
63.8+3.9
62.8+11.5
62.049.1

65.318.6

67.416.1

69.4412.361.049.2 65.5413.1

64.2411.260.0412.7 72.8414.5 67.045.1
65.34+11.365.3+14.868.5414.867.0411.2

584479 T8.6+g4 64.41130

DTI

SVM
GAT

57.846.1 58.7+12.6 57.9+8.6
60.845.2 62.1+11.4 6144105

59.2+10.9
63.1+8.6

59.049.1
60.0+2.6

58.9414.159.449.9 66.2411.5
61.146.8 58.3+13.262.44130

Both

BrainNN
MME-GCN
Cross-GNN

Ours

66.416.0 64.5175 68.8+6.8
66.2132 65.5459 66.7113.5
66.6152 66.013.0 66.116.3
70.516.7 70.7x14.5

71.6+11.5

66.7+38.6
64.0+7.6
64.415 8
69.21,46

67.447.0
67.445.2
68.413 3
T4.715.9

60.719.9 76.118.0 67.5+11.4
64.7412.5 71.744.1 65.3+10.2
67.9411.7 70.216.3 67.815.7
T4.4,9 5 742176 76.0L3 5

3.4 Ablation Study

We conduct ablation experiments across two datasets and the results are shown
in Table 2. Using a vanilla unimodal Transformer results in a 4.9% decrease
in accuracy compared to the cross-modal Transformer in the AD vs. NC clas-
sification task, indicating that the cross-modal Transformer utilizes structural
information to enhance the model’s ability to capture long-range dependencies
in cross-modal brain networks. Ablation of cross-modal topK pooling or using
unimodal topK pooling leads to a performance decline, indicating that cross-
modal topK pooling, by considering both functional and structural connectivity,
can more accurately identify ROIs crucial for disease prediction.

Table 2. Ablation Study Results on Different Datasets.

Transformer topK pooling ADNI (AD vs. NC) ABIDE (ASD vs. NC)
unimodal cross-modal unimodal cross-modal ACC(%) AUC(%) ACC(%) AUC(%)
v v 76.642.0 769469 69.546.1 64.619.2

v 79.543.3 T7.1lteé.s 70.516.3 67.5%10.4

v v 80.545.1 779476 716454 66.21120

v v 81.51+45 7944167 T4.T452 76.0+3.5
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Fig. 2. Visualization of discriminative ROIs and connectivity.

3.5 Interpretation Analysis

Discriminative ROIs Analysis. We use the t-test to measure the scores of
each node obtained from cross-modal pooling, in order to identify discriminative
brain regions. The important ROIs for AD vs. NC are superior frontal gyrus, me-
dial (SFGmed), superior frontal gyrus, orbital part (ORBsup), parahippocampal
gyrus (PHG), etc. The important ROIs for AD vs. MCI are REC, PHG, infe-
rior parietal lobule (IPL), etc. The important ROIs for MCI vs. NC are IPL,
amygdala (AMYG), hippocampus (HIP), etc. which is consistent with previous
studies [27]. In the ASD vs. NC classification, the important ROIs are precuneus
(PCUN), rectus (REC), etc. As mentioned in the literature [14], when ASD
patients infer their mental states, the activation of PCUN and REC decreases.
Discriminative Connectivity Analysis. We use a standard t-test to mea-
sure the attention maps based on the enhanced mask and display significantly
different connections (p-value< 0.01) in Fig.2. By counting the important con-
nections of each ROI in the ASD diagnostic task, it is found that the connections
and ROIs are mainly located in the frontal areas such as superior frontal gyrus
(SFG) and middle frontal gyrus (MFG). The maturation process in these ROIs
is disrupted in ASD patients, leading to social and language dysfunctions [6].
In the diagnostic tasks using the ADNI dataset, the important connections and
brain regions are PHG, HIP, etc., which is consistent with previous studies [22].

4 Conclusion

This paper proposes a cross-modal brain graph Transformer (CBGT) method,
which effectively leverages the complementary information of functional and
structural connectivity networks for brain disease diagnosis. CBGT consists of
two primary modules: the cross-modal Transformer module, which enhances the
attention mechanism by utilizing filtered key structural connectivity features.
The cross-modal topK pooling module, which selects significant ROIs by inte-
grating information from cross-modal brain networks, thereby minimizing infor-
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mation loss. Experiments conducted on the ABIDE and ADNI datasets demon-
strate that the proposed method outperforms state-of-the-art approaches and
identifies multi-modal brain network biomarkers.

Acknowledgments. This work was supported by the National Natural Science Foun-
dation of China under Grant Nos. 62088102, 82202183 and 62125305, and Guangdong
Major Project of Basic and Applied Basic Research under Grant No. 2023B0303000009.

Disclosure of Interests. The authors have no competing interests to declare that

are relevant to the content of this article.

References

10.

11.

12.

Arnulfo, G., Wang, S.H., Myrov, V., Toselli, B., Hirvonen, J., Fato, M., Nobili, L.,
Cardinale, F., Rubino, A., Zhigalov, A., et al.: Long-range phase synchronization of
high-frequency oscillations in human cortex. Nature communications 11(1), 5363
(2020)

. Assaf, Y., Pasternak, O.: Diffusion tensor imaging (dti)-based white matter map-

ping in brain research: a review. Journal of molecular neuroscience 34, 51-61 (2008)
Baker, J.T., Holmes, A.J., Masters, G.A., Yeo, B.T., Krienen, F., Buckner, R.L.,
Ongiir, D.: Disruption of cortical association networks in schizophrenia and psy-
chotic bipolar disorder. JAMA psychiatry 71(2), 109-118 (2014)

Chen, D., Lin, Y., Li, W., Li, P., Zhou, J., Sun, X.: Measuring and relieving the
over-smoothing problem for graph neural networks from the topological view. In:
Proceedings of the AAAT conference on artificial intelligence. vol. 34, pp. 3438-3445
(2020)

Curran-Everett, D.: Explorations in statistics: the log transformation. Advances in
physiology education 42(2), 343-347 (2018)

Dapretto, M., Davies, M.S., Pfeifer, J.H., Scott, A.A., Sigman, M., Bookheimer,
S.Y., Iacoboni, M.: Understanding emotions in others: mirror neuron dysfunction
in children with autism spectrum disorders. Nature neuroscience 9(1), 28-30 (2006)
Feng, J., Han, X., Xu, H., Wang, J., Jiang, J., Du, S., Gao, Y.: Cross-template-
based hypergraph transformer. In: ICASSP 2025-2025 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP). pp. 1-5. IEEE (2025)
Han, X., Feng, J., Xu, H., Du, S., Li, J.: A hypergraph transformer method for
brain disease diagnosis. Frontiers in Medicine 11, 1496573 (2024)

Hearst, M.A., Dumais, S.T., Osuna, E., Platt, J., Scholkopf, B.: Support vector
machines. IEEE Intelligent Systems and their applications 13(4), 18-28 (1998)
Heinsfeld, A.S., Franco, A.R., Craddock, R.C., Buchweitz, A., Meneguzzi, F.: Iden-
tification of autism spectrum disorder using deep learning and the abide dataset.
Neurolmage: Clinical 17, 16-23 (2018)

Jack Jr, C.R., Bernstein, M.A., Fox, N.C., Thompson, P., Alexander, G., Harvey,
D., Borowski, B., Britson, P.J., L. Whitwell, J., Ward, C., et al.: The alzheimer’s
disease neuroimaging initiative (adni): Mri methods. Journal of Magnetic Reso-
nance Imaging: An Official Journal of the International Society for Magnetic Res-
onance in Medicine 27(4), 685-691 (2008)

Kaiser, M.D., Hudac, C.M., Shultz, S., Lee, S.M., Cheung, C., Berken, A.M., Deen,
B., Pitskel, N.B., Sugrue, D.R., Voos, A.C., et al.: Neural signatures of autism.
Proceedings of the National Academy of Sciences 107(49), 21223-21228 (2010)



10

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

F. Author et al.

Kan, X., Dai, W., Cui, H., Zhang, Z., Guo, Y., Yang, C.: Brain network trans-
former. Advances in Neural Information Processing Systems 35, 25586-25599
2022

%(ana,) R.K., Maximo, J.O., Williams, D.L., Keller, T.A., Schipul, S.E., Cherkassky,
V.L., Minshew, N.J., Just, M.A.: Aberrant functioning of the theory-of-mind net-
work in children and adolescents with autism. Molecular autism 6, 1-12 (2015)
Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

Li, X., Zhou, Y., Dvornek, N., Zhang, M., Gao, S., Zhuang, J., Scheinost, D.,
Staib, L.H., Ventola, P., Duncan, J.S.: Braingnn: Interpretable brain graph neural
network for fmri analysis. Medical Image Analysis 74, 102233 (2021)

Liu, L., Wang, Y.P., Wang, Y., Zhang, P., Xiong, S.: An enhanced multi-modal
brain graph network for classifying neuropsychiatric disorders. Medical image anal-
ysis 81, 102550 (2022)

Park, H.J., Friston, K.: Structural and functional brain networks: from connections
to cognition. Science 342(6158), 1238411 (2013)

Rolls, E.T., Huang, C.C., Lin, C.P., Feng, J., Joliot, M.: Automated anatomical
labelling atlas 3. Neuroimage 206, 116189 (2020)

Van Den Heuvel, M.P.; Pol, H.EE.H.: Exploring the brain network: a review on
resting-state fmri functional connectivity. European neuropsychopharmacology
20(8), 519-534 (2010)

Veli¢kovié, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph
attention networks. arXiv preprint arXiv:1710.10903 (2017)

Vipin, A., Loke, Y.M., Liu, S., Hilal, S., Shim, H.Y., Xu, X., Tan, B.Y., Ven-
ketasubramanian, N., Chen, C.L.H., Zhou, J.: Cerebrovascular disease influences
functional and structural network connectivity in patients with amnestic mild cog-
nitive impairment and alzheimer’s disease. Alzheimer’s research & therapy 10,
1-15 (2018)

Wang, Y., Royer, J., Park, B.y., Vos de Wael, R., Lariviére, S., Tavakol, S.,
Rodriguez-Cruces, R., Paquola, C., Hong, S.J., Margulies, D.S., et al.: Long-range
functional connections mirror and link microarchitectural and cognitive hierarchies
in the human brain. Cerebral Cortex 33(5), 1782-1798 (2023)

Wein, S., Malloni, W.M., Tomé, A.M., Frank, S.M., Henze, G.I., Wiist, S., Greenlee,
M.W., Lang, E.W.: A graph neural network framework for causal inference in brain
networks. Scientific reports 11(1), 8061 (2021)

Yang, Y., Ye, C., Guo, X., Wu, T., Xiang, Y., Ma, T.: Mapping multi-modal brain
connectome for brain disorder diagnosis via cross-modal mutual learning. IEEE
Transactions on Medical Imaging 43(1), 108-121 (2023)

Yu, S., Jin, S.; Li, M., Sarwar, T., Xia, F.: Long-range brain graph transformer.
Advances in Neural Information Processing Systems 37, 24472-24495 (2024)
Zhao, Q., Lu, H., Metmer, H., Li, W.X., Lu, J.: Evaluating functional connectivity
of executive control network and frontoparietal network in alzheimer’s disease.
Brain research 1678, 262-272 (2018)

Zheng, K., Yu, S., Li, B., Jenssen, R., Chen, B.: Brainib: Interpretable brain
network-based psychiatric diagnosis with graph information bottleneck. IEEE
Transactions on Neural Networks and Learning Systems (2024)

Zhu, Y., Cui, H., He, L., Sun, L., Yang, C.: Joint embedding of structural and func-
tional brain networks with graph neural networks for mental illness diagnosis. In:
2022 44th Annual International Conference of the IEEE Engineering in Medicine
& Biology Society (EMBC). pp. 272-276. IEEE (2022)



