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Abstract. Accurate segmentation and quantitative thickness analysis
of retinal layers in optical coherence tomography (OCT) are crucial for
early diagnoses of ocular disorders. To address the clinical needs of diag-
nosing various ocular and systemic diseases, numerous multi-granularity
OCT datasets are constructed. While deep learning achieves impressive
results in retinal layer segmentation, general training paradigms require
separate models for datasets with different annotation granularities. Uni-
versal models are developed to unify diverse datasets and tasks via ad-
vanced techniques such as prompt learning, but they overlook across-
granularity information and struggle to generalize to new granularities.
In this paper, we propose a universal OCT segmentation model, named
UniOCTSeg, which builds its basis upon Hierarchical Prompting Strat-
egy (HPS) and Progressive Consistency Learning (PCL). HPS employs
a granularity-merging strategy to construct prompts at various granu-
larities, based on the finest-grained prompts, and develops a universal
segmentation model that utilizes these hierarchical prompts. Meanwhile,
PCL leverages an Exponential Moving Average teacher model to generate
pseudo-supervision signals, guiding the student model through easy-to-
hard progression to ensure consistency across hierarchical levels. Exten-
sive experiments across eight publicly available OCT datasets involving
six distinct granularity levels demonstrate UniOCTSeg’s superior perfor-
mance compared with state-of-the-art methods, while also illustrating its
high flexibility and strong generalizability. Our code and data are avail-
able at https://github.com/Halcyon1010/UniOCTSeg.

Keywords: Universal model - Hierarchical prompting - Progressive con-
sistency learning - Retinal layer segmentation.
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1 Introduction

Certain ocular [1,2,3] and systemic [4] diseases may exhibit characteristic changes
in retinal layer thickness in their early stages. Precise segmentation and analysis
of retinal layers’ thickness changes on optical coherence tomography (OCT) are
thus important, which can help early diagnosis and disease monitoring. To ad-
dress diverse clinical needs, a variety of OCT retinal layer segmentation datasets
with annotations of different layer granularities are constructed (Fig. la).
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Fig.1: (a) Multi-granularity annotation datasets constructed for diverse clinical
needs. (b) and (c) represent general and universal segmentation paradigms,
respectively. (d) Our proposed UniOCTSeg and its strengths. (e) Performance
comparisons between different segmentation paradigms and UniOCTSeg.

Recently, deep learning-based retinal layer segmentation in OCT is exten-
sively studied, demonstrating remarkable performance. Existing methods [6,7,8,9]
mainly focus on model architecture design, loss function optimization, and uti-
lization of topological information. These methods are nevertheless confined to
single-granularity datasets under general training paradigms, requiring special-
ized models for distinct tasks and preventing combined use of datasets with
different annotation granularities (Fig. 1b). This results in inflexibility, high
computational costs, and limited performance.

Universal segmentation models [10,11,12,13,14,15] draw significant attention
as a promising solution, leveraging prompt learning to adapt to across-dataset
tasks. They mainly employ: (1) one-hot prompts [10]; (2) CLIP-driven prompts
[11,13]; or (3) learnable prompts [12,14,15]. For datasets with varying granu-
larities, existing universal models can achieve multi-granularity segmentation at
a relatively low training cost by assigning unique prompts to each granularity
(Fig. 1c), demonstrating a certain degree of flexibility. However, they tend to
overlook the inherent correlations among tasks involving varying granularities.
Moreover, existing universal segmentation methods are limited to granularities
encountered during training. When new annotation schemes arise, the model
must be retrained or its architecture gets expanded, thus limiting its flexibility.

In such context, this paper proposes a universal OCT segmentation model,
namely UniOCTSeg, as shown in Fig. 1d. In UniOCTSeg, Hierarchy Prompt
Strategy (HPS) is designed to generate multi-granularity prompts based on
hierarchical priors of the retinal layers, leveraging the finest-grained prompts.
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Meanwhile, Progressive Consistency Learning (PCL) is incorporated to estab-
lish coherent consistency among tasks of different granularities, so as to achieve
more accurate and robust segmentation.

This work’s main contributions are three-fold: (1) To the best of our knowl-
edge, we introduce the first universal segmentation framework for OCT retinal
layer analysis, which leverages hierarchical dependencies and combinatorial con-
sistency across retinal layers. (2) We propose HPS to achieve comprehensive
compatibility with both seen and unseen multi-granularity datasets through
finest-grained prompts and a hierarchical merging strategy. We also develop
PCL to bridge task-related granularity gaps, thereby improving the consistency
across tasks and enhancing segmentation robustness. (3) Extensive experiments
on eight publicly available OCT datasets across six distinct granularies demon-
strate the superiority of UniOCTSeg over other state-of-the-art (SOTA) meth-
ods, as shown in Fig. le.

2 Method

Problem definition. Given a set of N datasets with retinal layer segmenta-
tion of different granularities, denoted as vazl D;(z,y), where D; is the i-th
dataset, x is an OCT image with the width and height of W and H, and y is the
corresponding ground truth retinal layer segmentation. The granularity level of
D; is defined as G(D,), namely the number of annotated layers in that dataset.
The proposed UniOCTSeg (illustrated in Fig. 2) tackles hierarchical retinal layer
segmentation through a novel universal segmentation network architecture (Sec.
2.1), an HPS module (Sec. 2.2), and a PCL module (Sec. 2.3).

2.1 Universal Segmentation Network Architecture

As illustrated in Fig. 2a, our network has two key components: 1) an architec-
ture with a vision encoder and a pixel decoder that extracts multi-scale image
features; 2) a prompt decoder which captures relationships among the finest-
grained /basic prompts and the multi-stage outputs from the pixel decoder.
Vision Encoder and Pixel Decoder. UniOCTSeg employs a hybrid vi-
sion encoder to extract features from OCT images, integrating a convolutional
neural network (CNN) encoder and a transformer encoder. The CNN encoder
consists of five blocks, each comprising two convolution layers followed by in-
stance normalization and ReLU activation. After processing, the output fea-
tures Fepn € RCX%X%, where C' is the number of channels, are reshaped into
Fr € R=2%32 XC before being sent to the transformer encoder which adopts the
ViT-B-16 architecture and pretrained on the ImageNet-21k dataset. Finally, the
outputs of the transformer encoder are shaped as F € RC*%5% 32, These out-
puts are then fed into both the pixel decoder and the prompt decoder. The pixel
decoder, mirroring the CNN encoder’s five-block structure, utilizes skip connec-
tions to upsample multi-scale features from the vision encoder, thereby generat-
ing the final decoding features F, € RCoutxWXH where Cy: is the number of
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Fig.2: Overview of UniOCTSeg. (a) UniOCTSeg’s network architecture. (b)
HPS for multi-granularity prompt generation from basic prompts. (c) Training
procedure of UniOCTSeg, where T is incorporated to achieve pseudo-supervised
consistency. (d) PCL enforcing across-granularity consistency.

output channels. Concurrently, multi-stage outputs {F., F2,...,F2} from the
pixel decoder are forwarded to the prompt decoder to facilitate prompt learning.

Prompt Decoder. The prompt decoder is constructed using L specially
designed transformer decoder layers that incorporate masked attention and self-
attention operations [16]. Additionally, nine learnable basic prompts are in-
troduced, denoted as U?:l Pé € R%X%, corresponding to nine basic retinal
layers. The basic retinal layers are represented as R, = {Rf),l =1,2,---,9},
which are detailed in [21]. The basic prompts are fed into the prompt decoder
to get updated. With this configuration, the prompt decoder effectively inte-
grates the pixel decoder’s multi-stage features and captures the interrelation-
ships among the basic prompts. After being processed by the prompt decoder,
the basic prompts are integrated through our proposed HPS, which generates
multi-granularity prompts. This design ensures a comprehensive understanding
of the retinal layers, enhancing a model’s ability to generate detailed and con-
textually relevant outputs.

2.2 Hierarchy Prompt Strategy (HPS)

To flexibly representing retinal segmentation tasks involving various granulari-
ties, we design HPS (see Fig. 2b). This strategy considers the retinal segmenta-
tion task may correspond to a total of nine hierarchical levels, with L; represent-
ing the i-th level. Each level is characterized by a distinct combination of the
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basic prompts, with the exception of L; which directly corresponds to the basic
retinal layers defined by [21]. To assure the prompt position information aligns
with the retinal layers, we construct a position gate using 1 and 0 to respectively
represent turn on and turn off. When representing a target prompt, the basic
prompts are selected to be turned on or off by the position gate and fed into a
convolution layer where they are merged into the target prompt of interest. This
merging method, denoted as M, is expressed as:

M : Conv(Pi ® G*) = PT (1)

where Conv(-) denotes a convolution layer, ® represents the Hadamard product,
PT is the target prompt, i represents the i-th basic prompt and G is the corre-
sponding position gate. Specifically, the hierarchical prompt at each level consists
of N basic prompts, denoted as H(-) = N. In this way, multi-granularity prompts
are uniformly represented using learnable basic prompts. The basic prompts, up-
dated by the prompt decoder, are merged into prompts corresponding a target
granularity, thereby forming prompts suitable for representing the desired gran-
ularity. For example, the merged result of P}, 77,? and 735’ is given as:

Pu = M(ngpl?apl?) (2)

where P, is the merged prompts, representing the retinal layer combination
of R}, R} and R}. Finally, Py gets multiplied with F,, outputting the retinal
layer segmentation of the target granularity. Theoretically, HPS can generalize
to retinal layer segmentation tasks of any granularity. Therefore it facilitates
scalable and efficient representations of segmentation tasks across granularities
and datasets, thereby enhancing the model’s adaptability and versatility.

2.3 Progressive Consistency Learning (PCL)

To strengthen the correlation among hierarchical segmentation tasks, we uti-
lize a novel training method termed PCL (see Fig. 2d), which is based on a
teacher-student training paradigm as shown in Fig. 2c. The paradigm generates
pseudo-supervised signals by aligning the merged results of a student model S’s
hierarchical outputs with the target pseudo-label produced by an exponential
moving average (EMA) teacher model T, thereby facilitating consistency learn-
ing across multi-granularity tasks.

Specifically, two distinct hierarchical outputs, Z; and Z;, are randomly se-
lected from S and merged according to Eq. 3. The merged result, denoted as
Zm, is then aligned with the pseudo-label Z, from 7 by applying the progressive
consistency loss Lpcon as given in Eq. 4, where ¢ represents the current train-
ing iteration, and the granularity of Z,, matches that of Z,. Other than Ly,cop, a
supervised loss L, is also employed, which is the combination of the Dice loss
and the binary cross-entropy loss.

Z, = Argmax(Concat(Z;, Z;)), (i # j). (3)



6 J. Zhong et al.

Lpcon (Fm, Zpitn) =1 — m (4)
The proposed progressive training strategy ensures stable convergence through
gradual difficulty incrementing scheduling, and enables hierarchical consistency
across granularities. Initially, the target pseudo-label would be chosen from a
coarse granularity, providing robust initialization for consistency alignment. As
training progresses, the proposed UniOCTSeg escalates to fine-grained tasks,
introducing controlled complexity via randomized sub-level merging tasks and
more difficult alignments. The evolving consistency constraints establish depen-
dencies across different segmentation levels, enabling the model to develop rep-
resentations that are more aligned with the retinal layers’ anatomy.

3 Experiments

Datasets. For this study, we collect five publicly available OCT retinal seg-
mentation datasets as the internal sets (A2A SDOCT [17], OCTA500 [18], DME
[19], GCN [20], HC-MS [21]), respectively containing {384, 500, 10, 244, 35} sam-
ples with {2, 5, 7, 8, 8} granularity levels. We also collect three other publicly
available datasets (AMD [22], HEG [23], NR206 [24]), which involve {20, 100,
206} samples with {2, 7, 8} granularities, respectively, as the external test sets.
Note that both HC-MS [21] and GCN [20] contain seven basic layers and one
merging layer. However, due to the difference in their two merging layers, the
training set includes all nine basic layers, as defined in our method. We divide
the internal training, validation and test sets in a 7:1:2 ratio, after which they
are preprocessed to normalized 512 x 512 slices. Data augmentation is applied to
the internal training sets, including horizontal flipping, random Gaussian noise
addition, and random brightness and contrast.

Implementation Details. Experiments are implemented in PyTorch using four
A6000 GPUs. Optimization is performed for 80,000 iterations with the Adam
optimizer and a batch size of 24. The learning rate starts at 0.0001 and gets
annealed using polynomial decay with power = 0.9 at each iteration.
Comparison with SOTAs. To comprehensively evaluate the performance of
UniOCTSeg, we conduct extensive comparisons with both advanced general
models including UNet [25], SwinUnetr [26], nnUNet [27], and retinal segmentati-
on-specific models, including YNet [7], LightReSeg [9], and TCCT [8]. We also
compare with universal models, namely UniSeg [12], UniLSeg [13], and Hermes
[14]. All methods are evaluated by two metrics: the Dice Similarity Coeflicient
(DSC) to assess region accuracy, and the 95% Hausdorff Distance (HD95) to
quantify boundary shape agreement.

As shown in Table 1, UniOCTSeg outperforms other models, achieving higher
DSC and lower HD95 across multi-granularity tasks. Quantitatively, it surpasses
the second-best models by 0.29%, 0.66%, 0.82%, 0.51%, and 0.43% in DSC on
all five datasets, and by 0.08 and 0.05 in HD95 on A2A SDOCT [17] and HC-
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Table 1: Comparisons with general and universal models on the internal test
sets, as evaluated by DSC (%) and HD95. The best results are in bold while

the second best ones are underlined.

A2A SDOCT OCTA 500 DME GCN HC-MS Avg.

DSCt  HD95)  DSCt  HD95 | DSCH HD95|  DSCt  HD95y  DSCt  HD95,  DSCt  HDY5 |
general models

UNet  94.07£0.06 2.19+2.79 93.2120.08 3.24+12.40 84.0620.07 2.85£3.65 78.06£0.10 3.51=3.34 B88.85+£0.06 B3.80£4.71 87.65=0.07 3.125.38

SwinUNetr 94.2540.05 1.64+2.39 93.46+0.08 2.28+10.62 85.75+0.04 2.52+3.08 79.23+£0.10 3.21£3.51 89.21£0.05 1.95+3.66 88.38+0.06 2.4:+4.65

nnUNet  95.03+0.04 0.87+£0.59 94.12+£0.07 1.762£9.22 85.8140.03 2.04+1.20 80.26+0.11 2.77+2.52 90.3040.04 1.16+3.20 89.10+0.06 1.72+3.35

specially designed models for retinal layers i

YNet 93855006 2.07£3.73 03572008 2.61=13.87 83.49£0.05 6.71£6.47 78.49£0.10 4.00=7.20 89.17£0.05 2.25%3.25 87.7120.07 3535692

LightReScg 94.46+£0.04 1.88+1.67 93.23£0.08 2.51+12.37 85.66:+0.04 2.6843.18 78.37+0.12 3.26+3.26 90.1840.04 1.07+£1.30 88.38+£0.06 2.28+4.36

TCOT  94.88+£0.05 1.39+1.19 93.79:+0.08 2.12+11.80 85.6420.04 2.54:+1.91 78.90:£0.11 3.49+4.16 89.00+0.06 2.08::2.65 88.44:£0.06 2.12+0.72
universal models

UniSeg  94.33+£0.04 0.96£2.15 90.3620.10 2.62£12.20 84.21£0.06 3.45+2.16 78.22+0.12 5.29%3.52 00.04£0.05 1.28+4.24 87.44£0.07 2.72£485

Hermes  96.11+£0.02 0.58+1.78 94.35+0.07 143+8.13 85.2940.05 2.13+1.27 77.62+0.12 3.27+2.64 90.2140.05 1.05£1.33 88.71£0.06 1.69+3.03

UniLSeg 88.1410.08 2.25+3.32 93.97+0.07 0.82£3.15 84.204£0.04 1.50£0.73 79.48:£0.10 1.74%2.16 86.58+£0.05 1.0240.64 86.47+0.07 1.47+2.00

Ours  96.4040.02 0.5041.55 95.0140.06 1.065.35 86.62+0.04 1.92+1.14 80.77+0.10 2.71+2.54 90.73-£0.04 0.92£0.67 89.9340.05 1.42£2.25

Method

MS [21]. Notably, UniOCTSeg exhibits consistent improvements across varying
tasks, highlighting its robustness across granularities.

To assess cross-domain and cross-granularity adaptability, we conduct eval-
uations on external test sets. While AMD [22] and NR206 [24] share annotation
granularities with the training data, HEG [23] presents previously unseen gran-
ularity levels. Consequently, both general and universal models cannot
be directly applied and evaluated on HEG [23]. We restructure HC-MS
[21] by combining the 6! and 7" retinal layers to align with the granularity of
tasks in HEG [23] for fair comparison. General models are trained on the recon-
structed HC-MS [21], and universal models require prompt redesign by adding
new task-specific prompts for tasks involving unseen granularities. In this way,
fair performance assessments can be performed. External test results are listed in
Table 2; our UniOCTSeg surpasses the second best model by 0.32%, 0.39% and
0.45% in DSC and 0.09, 0.02 and 0.05 in HD95 without retraining nor structure
modification, highlighting its strong adaptability and superiority compared to
other models on unseen datasets and granularities. To assess computational ef-
ficiency, we also report the number of parameters and floating point operations
(FLOPs) in Table 2. Although proposed UniOCTSeg has a larger per-model
footprint, its ability to handle multi-granularity tasks within a single framework

Table 2: Comparisons with general and universal models on the external test
sets, as evaluated by DSC (%), HD95, Param (M) and Flops (G).
N HEG

AMD NR206 Avg.
DSCt  HDY5 | DSCtH HDY5 | DSCH HDY5 | DSCT HDY5 |
general models
UNet  91.2750.05 2.03£6.55 86.48+0.04 1.80£1.73 40.57+0.09 132.85+41.53 72.77+0.06 45.56=16.60 142.5 [23.75 * 6] 591.00 [98.50 * 6] Low
SwinUNetr 91.33£0.04 1.52+2.17 86.5240.04 1.73£1.15 69.96+0.09 21.20+35.40 82.60+0.05 8.15+12.91 176.40 [29.40 * 6] 30.12 [5.02* 6]  Low
nnUNet  91.7240.04 1.15£1.10 86.442£0.04 1.90£2.20 76.9040.04 8.76+17.45 85.02+0.04 3.94+6.92 123.84 [20.64 * 6] 234.06 [39.01 * 6] Low
specially designed models for retinal layers segmentation
YNet  91.25£0.04 1.43+2.81 86.40£0.05 4.87£4.90 51.96+£0.10 15.33£18.40 76.54+0.06 7.21+8.70 70.80 [11.80 * 6] 90.66 [15.11 * 6]  Low

Method Param Flops Flexibility

LightReSeg 89.16+0.06 3.59+3.37 86.81+0.04 2.33+3.49 67.33+0.14 22.91+49.83 81.10+0.08 9.61+18.90 60.90 [10.15 * 6] 26.34 [4.39 * 6] Low
TCCT 90.71£0.05 2.27+2.14 86.9840.05 4.37+11.77 50.1040.16 61.82+41.20 75.93+0.09 22.82+18.37 91.62 [15.27 * 6] 50.70 [8.45 * 6] Low
universal models
UniSeg  91.32+0.04 1.3241.68 85.2840.04 1.46:+£0.78 65.5620.06 ~ 3.40+0.62  80.7240.05 2.0641.02 42.05 27.13 Median
Hermes  91.9740.04 1.07£1.17 87.1340.04 1.39£0.55 76.174£0.05 2.57+0.64 85.09+0.04 1.6840.79 8.14 25.67 Median
UniLSeg  85.24%0.08 2.41£2.50 85.1040.04 1.3240.37 68.16+0.06 2.50£1.23  79.50+0.06 2.08+1.37 68.42 25.02 Median
Ours  92.2940.04 0.98+1.32 87.524-0.04 1.34+0.60 77.3540.05 2.451+0.94 85.72+0.04 1.59+0.95 92.53 53.10 High

Low, Median, and High represent a model’s range of solvable granularities.
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Fig. 3: Visualization results from UniOCTSeg and other SOTA methods.
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leads to a more efficient overall solution compared to methods requiring retrain-
ing or separate models for each granularity level. The qualitative segmentation
results of different methods are illustrated in Fig. 3 for visual comparison.

Ablation Study. To verify the effectiveness of our proposed innovations, we
conduct ablation experiments to test HPS and PCL. To validate the hierarchical
prompt design, we compare three different configurations under our proposed
network architecture: 1) G( Z?:l L;) = 45 task-specific learnable prompts
are employed, which is the total number of distinct retinal layer granularities; 2)
utilizing predefined fixed prompts in our proposed strategy; 3) our proposed
HPS. The comparative analysis of the prompt methods, as illustrated in Fig.
4, reveals segmentation performance enhancement with learnable prompts over
fixed prompts. Notably, the proposed prompt strategy achieves the best results
in both DSC and HD95, underscoring its effectiveness in capturing inter-layer
dependencies in multi-granularity retinal layer segmentation.

For PCL, we evaluate two key components: consistency learning and progres-
sive training. Three configurations are designed: 1) neither consistency learning
nor progressive training is employed; 2) consistency learning is implemented ex-
clusively by simultaneously computing the consistency loss across tasks of all
granularities; 3) consistency learning is applied by computing the consistency
loss with a progressively changing target (from coarse to fine). As demonstrated
in Table 3, consistency learning leads to a decrease in segmentation performance
across multi-granularity datasets, compared to the baseline without it. However,
the full PCL setting achieves the highest gains, demonstrating that progressive
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training stabilizes the training process and facilitates the adaptation of learnable
prompts and the model to complex tasks and enhances segmentation accuracy.

4 Conclusion

This study proposes UniOCTSeg, a universal framework for retinal layer segmen-
tation in OCT that addresses key limitations of existing methods, particularly
their constrained flexibility and computational inefficiency. We propose three es-
sential innovations: a novel universal network architecture, HPS, and PCL. We
perform comprehensive evaluations of UniOCTSeg across eight publicly avail-
able OCT datasets on six distinct granularities and the results demonstrate its
superior segmentation accuracy, high flexibility, and robust across-granularity
adaptability. In future work, we will explore strategies for coordinating multi-
ple data distributions and utilizing unlabeled data, while extending our model
to other domains, such as hierarchical brain region segmentation [28], to meet
broader clinical and research needs.
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