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Abstract. Most existing deep learning-based registration methods are
typically constrained to dataset-specific optimization, requiring separate
models for different data characteristics. In contrast, training a sin-
gle model across diverse datasets presents an opportunity to create a
universal registration framework capable of handling multiple domains
simultaneously. However, key challenges remain in achieving effective
cross-dataset adaptation while maintaining robust generalization capa-
bilities, particularly for zero-shot registration tasks. In this work, we
propose PromptReg, a universal image registration framework that in-
corporates prompt learning to guide the model in effectively adapting to
different registration scenarios through explicit task prompts. The core
of PromptReg is a Registration Prompt Generator (RPG) that gener-
ates domain-specific task prompts based on the domains of input im-
ages. Specifically, we first introduce a Static Knowledge Base (SKB)
to store domain prompts and a dynamic prompt generation mecha-
nism that projects different inputs into a shared prompt space. Then,
we propose an adaptive prompt fusion strategy that combines stored
domain knowledge based on the similarity between the generated dy-
namic prompt and the prompts in SKB, creating transferable knowledge
for unseen domains. Finally, we optimize the prompt generator using
domain orthogonality and task similarity losses. Our experiments show
that PromptReg achieves competitive performance in universal registra-
tion and offers stronger zero-shot generalization. The code is available at
https://github.com/xiehousheng/PromptReg.
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1 Introduction

Recent advances in deep learning have revolutionized medical image registration
[2, 6, 10, 18, 20, 19], establishing learning-based approaches as superior alterna-
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Fig. 1. (a) and (b) show differences between conventional image registration method
on specific datasets and our method. (c) presents the DSC (%) performance of various
methods on zero-shot task.

tives to traditional iterative optimization methods [1, 11, 13, 9]. However, their
efficacy is inherently limited by the assumption of distributional consistency
between training and testing datasets. Although recent technologies like uni-
GradICON [16] facilitate training a single model on multiple data distributions,
the inherent heterogeneity of medical imaging data makes it practically impos-
sible to achieve comprehensive coverage of all possible distributions during the
training phase. This raises two critical challenges: (1) how to effectively capture
and model the known domain distributions in the training data and (2) how
to achieve robust zero-shot generalization on unseen domains through effective
transfer of the knowledge acquired from known domains.

As a foundation image registration model, uniGradICON exemplifies cross-
dataset registration capabilities by implementing gradient inverse consistency
(GradICON [17]) regularization across datasets. While showing promising capa-
bilities in universal registration, the registration performance of the model still
needs improvement. Of particular note is its limited performance in zero-shot
registration tasks. These limitations arise from its architectural design, which in-
corporates task-specific optimization structures from existing approaches [5, 14,
4, 7, 21], rather than introducing architectural components specifically designed
for universal image registration purposes.

In this work, we propose a universal image registration framework that pre-
serves the advantages of existing popular architectures while leveraging prompt
learning to guide model understanding of diverse registration scenarios through
explicit task prompts. As shown in Fig. 1 (a) and (b), unlike traditional reg-
istration networks that rely on models with different weights trained for dif-
ferent datasets to complete various registration tasks, our method facilitates
the flexible integration of explicit domain knowledge and task-specific cues by
our proposed registration prompt generator (RPG), enabling robust zero-shot
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Fig. 2. Overview of the proposed Registration Prompt Generator (RPG). The input
feature C4 are utilized to generate dynamic prompts pd through a dynamic template pt.
The pd is compared for similarity with each prompt in the SKB and the final prompt
P is derived by combining weighted SKB prompts with the dynamic prompt pd.

generalization (shown in Fig. 1 (c)). We demonstrate that appropriate domain
guidance enhances model generalization across different data distributions while
maintaining architectural simplicity. Specifically, we first introduce a learnable
Static Knowledge Base (SKB) that encodes domain-specific expertise from var-
ious known data sources. Subsequently, we define a dynamic prompt generation
mechanism that projects different inputs into a shared prompt vector space, en-
abling adaptive prompt generation based on input domain characteristics. To
further enhance zero-shot performance, we propose an adaptive prompt fusion
strategy that rebalances the stored domain knowledge in SKB based on the
similarity between the generated dynamic prompts and the prompts in SKB,
generating transferable prompt knowledge for unseen domains. Finally, the opti-
mization of the prompt generator is reinforced via domain orthogonality loss and
task similarity loss, which jointly act as regularization constraints to promote
effective learning.

Our contributions are twofold: (1) We introduce prompt learning to medi-
cal image registration, guiding the understanding of various registration tasks
with explicit task prompts for the registration model. (2) Our proposed registra-
tion prompt generator comprises a learnable static knowledge base, a dynamic
prompt generation mechanism, and an adaptive prompt fusion strategy, enabling
the generation of domain-specific prompts for inputs from diverse domains.

2 Methods

Given paired moving (Im : Ωm → <3) and fixed (If : Ωf → <3) images from an
arbitrary domain Di, we use RDP [18] as the encoder and decoder in our frame-
work, which extracts multi-scale hierarchical features Ml and Fl (l = 1, 2, 3, 4)
from the input images, respectively. Subsequently, the features from stage-4 (i.e.,
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M4 and F4) are concatenated along the channel dimension and fused through a
convolution layer with ReLU activation to generate a context-rich feature rep-
resentation C4. This representation is then fed into our Registration Prompt
Generator (RPG), which outputs a registration-adaptive task prompt P . Fi-
nally, the concatenated features [C4 c©P ] are used to replace the original C4 and
input into the progressive decoder, which predicts the dense deformation field
Φ. Below, we provide a detailed description of the proposed RPG as shown in
Fig. 2.

2.1 Static Knowledge Base

We formally define the Static Knowledge Base (SKB) as a collection of learnable
random initialization prompts B ∈ RZ×C×H×W×D = {b1, b2, . . . , bZ}, where Z
corresponds to the number of unique registration tasks present in the training set,
C denotes the channel dimension of the context-rich feature representation C4,
and H,W,D represent the spatial dimensions of C4. To facilitate discriminative
domain-specific knowledge learning, we require each prompt in SKB to maintain
its unique task characteristics by introducing an orthogonality constraint:

Lort (B) =
∥∥∥BBT − diag

(
BBT

)∥∥∥
2
, (1)

where diag(·) denotes the operator that preserves only the diagonal entries, and
‖ · ‖2 represents the L2-norm.

2.2 Dynamic prompt generation mechanism

Relying solely on the SKB is insufficient, due to its inherent limitation to the
training distribution. In practice, during inference, unseen registration tasks lack
accessible domain-specific cues from the SKB. To address this limitation, we de-
velop a dynamic prompt generation mechanism that projects different inputs
into prompt vector spaces, achieving input-adaptive feature modulation without
depending on predefined domain distributions. To achieve this, we randomly ini-
tialize a learnable dynamic prompt template, denoted as pt. Given input features
C4, we concatenate C4 with pt and feed [C4 c© pt] into convolutional blocks for
fusion, generating dynamic prompt pd.

2.3 Adaptive Prompt Fusion Strategy

To leverage both the domain knowledge encoded in SKB and the dynamic input-
specific information captured by pd, we propose an adaptive prompt fusion strat-
egy that seamlessly integrates these prompt representations. Considering the rich
domain knowledge encoded in the SKB, we recombine this information to gener-
ate domain-specific guidance for both known and unseen domains. Specifically,
for each prompt vector bi ∈ B, we compute its similarity with the dynamic
prompt pd using cosine similarity and apply softmax function to obtain adaptive
weights W = {ω1, ω2, . . . , ωZ}:
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sim(pd, bi) =
〈pd, bi〉
‖pd‖ · ‖bi‖

, (2)

ωi =
exp(sim(pd, bi)/τ)∑Z

k=1 exp(sim(pd, bk)/τ)
, (3)

where τ is the temperature parameter. Subsequently, a weighted aggregation of
the prompts in SKB is computed as follows:

pw =

Z∑
i=1

ωi · bi, (4)

Then, we concatenate the dynamic prompt pd with pw to generate the con-
catenated feature [pd c© pw]. The concatenated feature is passed through a con-
volution block for fusion and to generate the final task prompt P .

2.4 Loss function

During the training phase, the loss function consists of four parts. The image
similarity loss Lsim is calculated using the MIND loss [8], the smoothness loss
Lsmooth is implemented using the method from VoxelMorph [2], the domain
orthogonality loss Lort is introduced in Sec. 2.1, and the task similarity loss Lts

is defined by computing the similarity between the prompt bi for the current
task in the SKB and the weighted prompt pw, which can be expressed as:

Lts =

(
1− 〈pw, bi〉
‖pw‖ · ‖bi‖

)2

, (5)

The overall loss can be expressed as:

L = Lsim + λ1Lsmooth + λ2Lort + λ3Lts. (6)

where λ1, λ2 and λ3 are weighting coefficients that balance the contribution of
each loss term.

3 Experiments

3.1 Experimental Setup

Datasets. Our experiments are conducted on five datasets representing a di-
verse range of anatomical structures: (1) the OASIS dataset [12] (Brain), from
the Learn2Reg 2021 Challenge, consists of 289 and 125 MRI scans for train-
ing and testing, respectively. (2) the Abdominal dataset (Abdominal), from the
Learn2Reg 2021 Challenge, consists of 38 and 16 CT scans for training and
testing, respectively. (3) the Hippocampus dataset [15] (Hippocampus), consists
of 208 and 52 MRI scans for training and testing, respectively. (4) the M&Ms
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Fig. 3. Qualitative comparison of different methods on the Abdominal registration
task. Each comparison method includes two settings: when the domain of the displayed
image is included in the training set (top) and when the domain of the displayed image
is not included in the training set (zero-shot scenario) (bottom).

dataset [3] (Cardiac), consists of 224 and 96 brain MRI scans for training and
testing, respectively. (5) the in-house collected Hip dataset (Hip), consists of 45
and 16 CT scans for training and testing, respectively. These datasets contain
segmentation labels for 35, 4, 2, 3, and 3 types of organs respectively, which are
used to evaluate the performance of different registration methods. After pairing
the images, the number of training/testing image pairs are as follows: 578/250
(Brain), 703/120 (Abdominal), 624/156 (Hippocampus), 224/96 (Cardiac), and
1980/132 (Hip).

Data Preprocessing. The CT images are clipped to Hounsfield Units (HU) in
the range [-1000, 1000] and normalized to [0, 1]. For MRI data, intensity values
are clipped at the 99th percentile prior to normalization. Similar to the imple-
mentation of uniGradICON, all volumes are resampled to [160, 160, 160] using
trilinear interpolation for consistent dimensions across datasets. The output de-
formation fields are interpolated back to their original resolution for evaluation.

Implementation Details. During training, we randomly sample 100 image
pairs per dataset per epoch, with a batch size of 1, training for 300 epochs in
total. Set hyperparameters to τ=0.1, λ1=0.1, λ2=0.001, λ3=0.001. The initial
learning rate is set to 1.0E-4 and decays at each iteration following a polynomial
learning rate strategy with a power of 0.9. We compare our method against two
established baselines: VoxelMorph and uniGradICON. VoxelMorph is trained
using the same image similarity loss, smoothness loss and hyperparameter con-
figuration as our method. For uniGradICON, we adhere to its two-stage training
scheme and loss function, executing 300 epochs for the initial stage followed by
an additional 200 epochs for the subsequent refinement stage. In addition to
using all datasets for training, to evaluate generalization performance, we test
models under five configurations, each excluding one dataset during training to
implement zero-shot registration scenarios. All quantitative experiments use the
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Table 1.Quantitative comparison of DSC (%) results for different registration methods
on test sets of different organ types under various training set types. The results in the
zero-shot task are highlighted with light blue color.

Training Set Types Methods DSC (%) in different datasets
Brain Abdominal Hippocampus Cardiac Hip

w/o Brain
VoxelMorph 71.0 ± 0.2 45.3 ± 2.5 62.2 ± 1.9 73.3 ± 0.8 67.8 ± 1.3
uniGradICON 75.5 ± 0.1 55.2 ± 1.4 72.6 ± 1.1 81.5 ± 0.5 85.8 ± 0.8
Ours 79.9 ± 0.1 66.0 ± 2.2 75.7 ± 0.8 84.6 ± 0.3 92.6 ± 0.3

w/o Abdominal
VoxelMorph 73.5 ± 0.2 43.9 ± 2.4 62.0 ± 2.0 73.5 ± 0.7 66.2 ± 1.4
uniGradICON 78.1 ± 0.1 44.8 ± 1.9 72.1 ± 1.3 80.9 ± 0.5 81.1 ± 1.1
Ours 80.5 ± 0.1 61.2 ± 2.2 75.1 ± 0.8 84.2 ± 0.3 92.5 ± 0.2

w/o Hippocampus
VoxelMorph 73.0 ± 0.2 43.5 ± 2.3 60.3 ± 2.0 73.5 ± 0.8 65.0 ± 1.4
uniGradICON 77.7 ± 0.1 53.7 ± 1.3 65.5 ± 2.1 81.0 ± 0.5 83.7 ± 0.8
Ours 81.0 ± 0.1 70.1 ± 1.6 71.9 ± 1.2 84.8 ± 0.3 93.3 ± 0.2

w/o Cardiac
VoxelMorph 72.0 ± 0.2 44.6 ± 2.4 60.9 ± 1.9 71.4 ± 0.9 67.9 ± 1.3
uniGradICON 77.5 ± 0.1 51.8 ± 1.4 72.2 ± 1.3 75.3 ± 0.8 82.4 ± 1.1
Ours 81.2 ± 0.1 66.3 ± 2.0 75.1 ± 0.9 81.5 ± 0.5 91.7 ± 0.4

w/o Hip
VoxelMorph 72.9 ± 0.2 43.6 ± 2.3 61.3 ± 2.0 73.0 ± 0.7 64.2 ± 1.4
uniGradICON 78.1 ± 0.1 51.4 ± 1.3 72.0 ± 1.3 80.7 ± 0.5 69.8 ± 1.7
Ours 81.4 ± 0.1 67.3 ± 2.0 75.4 ± 1.0 84.9 ± 0.3 85.8 ± 1.1

All domains
VoxelMorph 73.1 ± 0.2 43.6 ± 2.3 60.5 ± 2.0 73.8 ± 0.7 65.6 ± 1.4
uniGradICON 77.8 ± 0.1 55.3 ± 1.4 72.1 ± 1.4 82.0 ± 0.4 85.7 ± 0.7
Ours 81.3 ± 0.1 68.7 ± 2.0 74.8 ± 1.0 84.7 ± 0.3 93.4 ± 0.2

average Dice Similarity Coefficient (DSC) metric to quantify the volume overlap
between the warped segmentation mask and the fixed image segmentation mask.

3.2 Experimental Results and Discussion

Comparison Study. Table. 1 shows the DSC evaluation results obtained from
various registration methods across six different experimental configurations.
These configurations include scenarios where specific datasets are excluded from
the training process (for example, w/o Brain indicates training without the Brain
training dataset). The results show that while VoxelMorph can be trained in a
multi-dataset environment, its accuracy is limited due to its simplistic archi-
tecture, which struggles with complex deformations. In contrast, uniGradICON
uses a hierarchical network that captures complex nonlinear deformations, im-
proving performance but still falling short of ideal results. Our method outper-
forms others by incorporating prior knowledge through prompts. The zero-shot
generalization ability of universal registration models is crucial for cross-task
registration. Compared to other methods, our method achieves the best zero-
shot generalization performance, underscoring the efficacy of our task prompt in
improving model adaptability across diverse cross-task settings. Fig. 3 presents
a qualitative comparison of different methods on the Abdominal dataset, show-
ing warped labels overlaid on the warped images. When the testing domain is
included in the training set, the training configuration follows the ’All domains’
settings in Table. 1. Meanwhile, for the domain not included in the training
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Table 2. Ablation study results of DSC (%) on test sets for different organ types. The
results in the zero-shot task are highlighted with light blue color.

Training Set Types Methods DSC (%) in different datasets
Brain Abdominal Hippocampus Cardiac Hip

w/o Abdominal
w/o RPG 79.7 ± 0.1 56.2 ± 3.0 74.6 ± 1.0 83.8 ± 0.3 92.2 ± 0.3
w/o R. Cons. 80.6 ± 0.1 57.9 ± 2.7 75.1 ± 1.0 84.3 ± 0.3 92.2 ± 0.3
Ours 80.5 ± 0.1 61.2 ± 2.2 75.1 ± 0.8 84.2 ± 0.3 92.5 ± 0.2

w/o Hippocampus
w/o RPG 78.9 ± 0.1 63.6 ± 1.8 69.8 ± 1.3 84.1 ± 0.3 90.0 ± 0.5
w/o R. Cons. 81.1 ± 0.1 68.7 ± 1.6 71.4 ± 1.3 84.7 ± 0.3 93.0 ± 0.2
Ours 81.0 ± 0.1 70.1 ± 1.6 71.9 ± 1.2 84.8 ± 0.3 93.3 ± 0.2

All domains
w/o RPG 78.5 ± 0.1 63.4 ± 2.3 73.6 ± 1.1 83.8 ± 0.3 90.9 ± 0.4
w/o R. Cons. 80.1 ± 0.1 64.7 ± 2.1 74.4 ± 1.0 84.4 ± 0.3 92.5 ± 0.2
Ours 81.3 ± 0.1 68.7 ± 2.0 74.8 ± 1.0 84.7 ± 0.3 93.4 ± 0.2

set (shown at the bottom of Fig. 3), the training configuration follows the ’w/o
Abdominal’ settings.

Ablation Study. Table. 2 presents the results of ablation studies on three se-
lected training sets to evaluate the contribution of different components. The
results reveal that removing the prompt generator (w/o RPG), leaving only
the naive registration network (vanilla RDP), leads to substantial performance
degradation across all datasets in all training set types. This is due to the absence
of task-specific prompts, which are essential for capturing underlying distribu-
tions across multiple datasets. Moreover, this variant has limited zero-shot gen-
eralization. When we only remove the regularization constraints (w/o R. Cons.)
consisting of domain orthogonality loss Lort and task similarity loss Lts, the
model still underperforms compared to the complete framework. This is because
without the guidance of regularization constraints, the model must adaptively
adjust the prompt information in SKB and generate task-specific prompts to
enhance registration accuracy across different datasets. These results validate
the effectiveness of our regularization design in guiding the network to better
differentiate between tasks.

4 Conclusion

In this work, we propose PromptReg, a universal medical image registration
framework based on prompt learning, aimed at guiding the model to adapt to
different registration scenarios through explicit task prompts. At the core of our
approach is the Registration Prompt Generator (RPG), which stores prompt
information for known domains in a Static Knowledge Base (SKB) and projects
different inputs into a shared prompt vector space through a dynamic prompt
generation mechanism. Additionally, we introduce an adaptive prompt fusion
strategy, effectively leveraging stored domain knowledge to generate transferable
prompt information for unseen domains. Furthermore, we incorporate domain



Title Suppressed Due to Excessive Length 9

orthogonality loss and task similarity loss into the optimization process. Ex-
tensive experimental results demonstrate that PromptReg achieves competitive
performance in cross-dataset registration tasks and exhibits robust capabilities
in zero-shot generalization, showcasing promising universal image registration
performance.

Disclosure of Interests. The authors declare no conflict of interest.
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