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Abstract. Accurate outcome prediction for head and neck cancer is crit-
ical but remains challenging due to domain shifts across multi-institutio-
nal imaging datasets. Existing domain generalization (DG) methods fo-
cus on visual features while overlooking clinical domain-invariant infor-
mation. To address this gap, we propose MedPro-DG, a novel prompt
learning framework that integrates CT imaging with clinical variables
using domain-aware masked contrastive prompt learning. Our method
can effectively mitigate domain shifts by aligning cross-modal features
with domain-invariant clinical semantics. Extensive experiments con-
ducted across six medical centers demonstrate the superiority of MedPro-
DG, which outperforms state-of-the-art DG methods by 1.35% in AUC
and 4.06% in ACC on average. Ablation studies further reveal that our
prompt learning can capture clinically domain-invariant features, high-
lighting their diagnostic relevance. This work pioneers domain-invariant
vision-language fusion for medical domain generalization, providing an
available and effective solution for multi-center collaborative diagnosis.

Keywords: Domain Generalization · Clinical Information · Prompt Le-
arning · Domain Contrastive Learning · Head and Neck Cancer.

1 Introduction

Head and neck (H&N) cancer is a group of tumors originating from squamous
cells on the surface of mucous membranes in the oral cavity, sinuses, pharynx
or larynx [2]. H&N cancers account for approximately 5% of all malignancies,
with more than 500,000 new cases diagnosed worldwide each year [22]. Pri-
mary treatment modalities include surgery, radiation therapy, and chemotherapy,
while advanced stage disease often requires a multimodal therapeutic approach
[5]. With the advancement of deep learning, researchers have proposed vari-
ous prediagnostic models to assess the degree of pathological differentiation in
H&N cancers [7,10,24], aiming to assist clinicians in diagnosis. However, existing



2 F. Author et al.

methods typically rely on data from a single medical institution (or domain) for
model training and evaluation. Although these models achieve satisfactory per-
formance on test sets from the same institution, their generalizability decreases
significantly when applied to data from different institutions [11]. This limita-
tion arises because medical data are collected from various hospitals and medical
devices, resulting in substantial domain variations (e.g., differences in imaging
equipment, acquisition protocols, or patient demographics). Such variations can
lead to poor performance of deep learning-based models when deployed in new
clinical settings.

Domain Generalization (DG) methods [19,21,23,26] have been developed to
address these challenges by training models to extract domain-invariant features,
thus minimizing discrepancies across domains. Traditional DG approaches of-
ten focus on image data, employing techniques such as data augmentation[25],
domain-adversarial training [4], and meta-learning [13]. Data augmentation en-
hances model robustness by artificially expanding the training dataset with
transformed samples. Domain-adversarial training encourages the model to learn
features that are indistinguishable across domains. Meta-learning simulates do-
main shifts during training to improve generalization to unseen domains. How-
ever, these methods frequently overlook the multimodal nature of medical data,
particularly the integration of clinical information, which is generally more con-
sistent across institutions due to standardized medical terminologies and guide-
lines.

In this paper, we propose MedPro-DG, a vision-language framework for do-
main generalization in outcome prediction of H&N cancer. The framework syn-
ergizes CT imaging with clinical text through domain-aware masked contrastive
prompt learning, effectively integrating image data with clinical text information.
Our framework tackles cross-domain medical prediction through two key innova-
tions: an Attention-Augmented Visual Prompt (AAVP) that integrates spatial
attention from CT imaging with learnable text prompts to fuse domain-invariant
clinical semantics, and a Domain-Masked Contrastive Loss (DMCL) enforcing
cross-domain alignment of same-class clinical text embeddings while repelling
different-class pairs. Specifically, AAVP encodes tumor location attention maps
from ResNet50 [8] layer4 to dynamically modulate clinical text prompts, bridg-
ing imaging and clinical narratives in a domain-robust manner. DMCL further
suppresses domain-specific biases by redefining positive pairs as same-diagnosis
samples across institutions and negative pairs as different-diagnosis samples, en-
suring text embeddings capture pathology-centric semantics invariant to shifts
in imaging protocols or device vendors. Extensive experiments across six cen-
ters demonstrate the superiority of MedPro-DG, achieving the highest ACC of
83.70% and AUC of 74.34%. Ablation studies reveal individual contributions.
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2 Method

2.1 Overview

Let D = {D1, . . . , D6} denote multi-domain data from six medical centers, where
each domain Di contains CT images, clinical variables, and binary labels (lo-
coregional recurrence or normal). Each sample is represented as (xCT,xClin, y),
with xCT and xClin denoting the imaging and clinical features respectively. We
aim to learn a domain generalizable model from D without accessing the data
from the target domain during training. Our framework aims to enhance domain
generalization for medical image analysis using clinical text information and a
novel attention-augmented prompt learning strategy. The core idea is to freeze
all backbone networks (image and text encoders) while only training learnable
prompts and a domain-aware contrastive loss module. This design reduces over-
fitting risks and ensures efficient adaptation to multi-domain clinical scenarios.
The overall framework of MedPro-DG is shown in Fig.1.
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Fig. 1. The overall framework of MedPro-DG. It learns generalizable representa-
tions through Attention-Augmented Visual Prompt (AAVP) and Domain-Masked Con-
trastive Learning(DMCL). GAP: global average pooling. GMP: global max pooling.

2.2 Attention-Augmented Visual Prompt

Medical imaging domains (for example, different CT scanners) often exhibit lo-
cal texture variations [26]. Our Attention-Augmented Visual Prompt (AAVP)
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explicitly models cross-domain spatial dependencies through dual-path atten-
tion. AAVP’s attention mechanism automatically focuses on pathology-relevant
regions while ignoring scanner-specific artifacts. We use ResNet50 [8] as the im-
age encoder and CLIP[16] text encoder to extract specific clinical information.
Note that the training parameters are frozen for the encoders of the above two
branches. Concretely, instead of using ’a photo of a [class]’ as a context, we
encode clinical variables by concatenating them into a simple sentence, e.g., "57,
Oropharynx, T2, N0, radiation, positive". Furthermore, following [27,28], we in-
troduce M = 16 learnable context vectors Plearnable = {v1, v2, . . . , vM}, each
of which has the same dimension as the clinic embeddings. In the last layer of
ResNet50 [8], layer4, we extracted its features as input to our AAVP:

FLayer4 = ResNet50frozen(xCT) (1)

Then, we derive spatial attention through a dual-path adapter [14]:{
Fmax = W1 · MaxPool(FLayer4) + b1

Favg = W2 · AvgPool(FLayer4) + b2
(2)

α = σ(Fmax + Favg) (3)

T = CLIPtext[Concate[α⊙ Plearnable, Pclinic]] (4)

where W1, W2 are trainable weights, σ denotes sigmoid activation, Pclinic is
from clinic information, see in Section 3.1. Each learnable prompt Plearnable is
initialized with a Gaussian distribution parameterized by N (µc, σ

2
c ). ⊙ means

element-wise multiplication.

2.3 Domain-Masked Contrastive Learning

Clinical narratives inherently encode disease-specific semantics that are less sen-
sitive to domain shifts, whereas imaging features often entangle pathological
patterns with scan artifacts. Using this property, domain-masked contrast learn-
ing (DMCL) explicitly aligns text embeddings through domain-aware constraints
to disentangle domain-invariant clinical concepts. Let there be N samples in the
batch:

N =
∑

NDi (5)

where NDi denotes the number of samples in the source domain i, and the clinical
text feature vector for each sample is obtained through the AAVP.

Following the standard practice in supervised contrastive learning, we com-
pute the cosine similarity matrix S between all text embeddings. The key innova-
tion lies in our domain-aware masking strategy for selecting positive and negative
pairs. Eq.7 is the loss function based on supervised contrastive learning:

Sij = Ti · T⊤
j (6)

Lsup = −
∑
i∈I

1

|Pi|
∑
p∈Pi

log
exp(Sip/τ)∑

a∈Ai
exp(Sia/τ)

(7)
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where positive samples Pi denote all samples in the same class as anchor i
(whether from the same domain or not), and negative samples Ai denote all
samples except the anchor (including samples in the same class with different
domains).

As shown in Eq.7, all intra-class samples are treated as positives. However,
our approach introduces a domain-masked contrastive loss, which incorporates
an additional domain label di. Domain labels are temporarily generated before
training. We incorporate both domain and category labels to define positive and
negative sample pairs. Specifically, for the i-th sample:

Ni = {j | yj ̸= yi} (8)

Pi = {j | yj = yi and dj ̸= di} (9)

This allows us to selectively pair samples from different domains, thus en-
forcing domain-invariant feature learning. The details are shown in Eq.10.

LDMCL = − 1

N

N∑
i=1

1

|Pi|
∑
j∈Pi

log
exp(Sij/τ)∑

p∈Pi

exp(Sip/τ)︸ ︷︷ ︸
same class, different domains

+
∑
k∈Ni

exp(Sik/τ)︸ ︷︷ ︸
different class

(10)
This loss is combined with classification loss, where we set λ = 1.0.

Ltotal = LCE + λLDMCL, (11)

3 Experiments and Results

3.1 Dataset

Our experiments utilized datasets from six medical centers, each of which pro-
vided unique clinical and imaging data. These datasets are obtained from three
sources: The Cancer Imaging Archive (TCIA) [3], the "H&N1" dataset from
Maastricht University Medical Center (MUMC) [1], and a dataset collected by
the University of Texas Southwestern Medical Center (UTSW) [24]. The TCIA
datasets [3] include clinical and PET/CT imaging data from 298 patients treated
at four medical centers between April 2006 and November 2014: CHUM, CHUS,
HGJ, HMR. The MUMC dataset [1], sourced from the "H&N1" dataset associ-
ated with a study published in Nature Communications, comprises clinical data
and computed tomography (CT) scans of 137 patients who underwent radia-
tion therapy at the Maastricht University Medical Center in the Netherlands.
The UTSW dataset [24] consists of clinical and PET/CT imaging data from
615 patients who received radiotherapy at the University of Texas Southwestern
Medical Center in Dallas, Texas, between September 2005 and November 2015.

Since PET imaging is not available at MUMC, we utilized only CT images
and clinical data for our study. To ensure a sufficient duration of follow-up,
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Table 1. The number of samples from six different medical centers. We excluded all
samples with a follow-up period of less than one year.

Class CHUM CHUS HGJ HMR MUMC UTSW
∑

C

LRR 6 14 12 6 13 49 100
Normal 56 79 65 13 92 157 462∑

D 62 93 77 19 105 206 562

we excluded all samples with a follow-up period of less than one year. Tab.1
shows the number of samples from each medical center after screening. Clinical
variables include: 1) patient’s age at diagnosis (Age), 2) Primary tumor site
(Primary Site), 3) Tumor Stage, indicating tumor size and extent (T-stage), 4)
Nodal Stage, indicating lymph node involvement (N-stage), 5) type of treatment
received (Therapy), and 6) Human Papillomavirus Status, indicating whether
the patient tested positive or negative for HPV (HPV Status).

3.2 Experimental Setup

We utilize ResNet-50 as the backbone network for our classification architecture,
integrating it with the CLIP [16] text encoder to effectively combine clinical text
and imaging data. For all methods, ResNet-50 uses ImageNet-pretrained weights,
including our image encoder. The CLIP text encoder uses the officially provided
"RN50" pretrained weights. The model is trained over 1600 iterations with a
batch size of 80, distributed as 16 per source domain. During training, we save
a model checkpoint every 40 iterations. The model checkpoint with the best
performance on the validation set is selected for the final evaluation. Stochastic
Gradient Descent (SGD) is used as the optimizer, with an initial learning rate of
0.01, a momentum of 0.9, and a weight decay of 5e-4. The weighting parameter λ
in Eq.11 is set to 1.0. All experiments were performed with Python 3.7, PyTorch
1.12.0, and an Nvidia RTX3090 GPU with 24GB of memory.

For evaluation, we adopt the leave-one-domain-out setting [6], a widely used
scheme in domain generalization. In this setting, one domain is designated as the
target, while the remaining domains are used as source data for model training.
The target domain remains unseen during training, and the model is evaluated
on this unseen target domain. We report the accuracy (ACC) and area under
the curve (AUC). All models in this study are based on ResNet-50 and share
identical network architectures. The only exception is DANN, which includes
an additional domain classifier. Consequently, detailed calculations of the model
parameters and computational complexity are not central to our discussion.

3.3 Comprehensive Comparison with Other Methods

We first compare the performance of our method with the state-of-the-art meth-
ods in DG. We choose Baseline(EMR [20]), DANN [4], CORAL [18], VREx [12],
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Mixup [25], MLDG [13], GroupDRO [17], RSC [9] and ANDMask [15]. In addi-
tion, we have chosen ERM [20] in DG to incorporate our method, as it shows
strong competitiveness with many existing DG methods.

As summarized in Fig.2, MedPro-DG achieves an average ACC of 83.70% and
AUC of 74. 34% in six medical centers under a leave-one-domain-out protocol,
demonstrating superior cross-domain generalization capability. Compared to ex-
isting domain generalization methods, MedPro-DG outperforms VREx by 4.06%
(83.70% vs. 79.64%) and RSC by 5.32% (83.70% vs. 78.38%) in ACC, validating
its robustness to clinical text-variability across hospitals, while also surpassing
Mixup by 1.35% (74.34% vs. 72.99%) and RSC by 1.96% (74.34% vs. 72.38%) in
AUC, indicating more substantial discriminative power for imbalanced outcome
prediction tasks (e.g., locoregional recurrence vs. normal).
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Fig. 2. Heatmap of Domain Generalization Performance: Darker Shades Indicate
Higher ACC/AUC, Highlighting Domain-Specific Generalization Challenges.

3.4 Ablation Studies

We conduct the ablation experiments to explore the improvement in model per-
formance by AAVP and DMCL.

AS1: Effect of both AAVP and DMCL: In the model without AAVP
and DMCL, we remove them and only reserve the learnable prompt.

AS2: Effect of AAVP: In the model without DMCL, we remove the
DMCL loss and use only the CE loss as the total loss.

AS3: Effect of DMCL: In the model without AAVP, we remove the AAVP
and reserve the learnable prompt.

AS4: Effect of Domain-Masked in DMCL: In the model without
Domain-Masked constraints in DMCL, we use only class labels to construct
positive and negative samples, as shown in Eq.7.
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Table 2. The improvement of model performance by AAVP and DMCL. AS4 removing
domain-masked constraints and using supervised contrastive learning.

Ablation Studies AAVP DMCL Avg.
Domain Label Class Label ACC(%) AUC(%)

AS1 77.96 69.07
AS2 ! 80.01 68.81
AS3 ! ! 82.70 70.77
AS4 ! ! 81.96 70.67
MedPro-DG ! ! ! 83.70 74.34

Table 3. Impact of Domain-Masked Contrastive Loss Weight (λ).

Avg λ
0.1 0.50 0.75 1.0 1.25 1.5

ACC 83.40 82.63 80.61 83.70 81.44 81.45
AUC 71.39 71.07 73.67 74.34 73.01 71.79

The above four factors are analyzed and the experimental results are shown
in Tab.2. The baseline configuration (AS1), without AAVP or DMCL, yields
77.96% ACC and 69.07% AUC, reflecting the limitations of naive imaging-text
fusion. Enabling AAVP (AS2) increases ACC by 2.05% by paying attention to
tumor location, although its isolated use slightly reduces AUC (-0. 26%), indi-
cating that spatial guidance alone is insufficient for domain alignment. Activat-
ing DMCL (AS3) significantly improves both metrics, achieving 82.70% ACC
(+4.74%) and 70.77% AUC (+1.70%), as domain-masked contrastive learning
aligns cross-institutional semantics. The complete model synergizes both com-
ponents, reaching 83.70% ACC and 74.34% AUC, increasing an absolute gain
of 5.74% and 5.27% over the baseline (AS1). This synergy highlights the role of
AAVP in refining anatomy-aware characteristics and the capacity of DMCL to
suppress domain shift, ultimately enhancing prognostic reliability. AS4 remov-
ing domain-masked constraints and using standard contrastive learning through
Eq.7, underperforming the full DMCL.

Tab.3 analyzes the impact of contrastive weight loss λ in DMCL. Optimal
performance is achieved at λ = 1.0 with 83.70% ACC and 74.34% Auc, bal-
ancing classification and alignment between domains. Overweighting contrastive
learning degrades ACC, whereas lower values compromise AUC due to insuffi-
cient domain invariance. This underscores the necessity of calibrated multimodal
alignment for robust generalization.

4 Conclusion

This work alleviates domain shifts in multi-center medical imaging through
attention-augmented visual prompts (AAVP) and domain-masked contrastive
learning (DMCL). Our framework aligns imaging features with diagnostic se-
mantics by anchoring clinical text as a domain-invariant semantic guide. The
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proposed AAVP refines anatomy-aware localization by attention, while DMCL
enforces cross-domain consistency by contrasting same-class samples from dis-
tinct institutions. We enhance the generalization to unseen data from different
domains. Clinically, our framework offers an available and effective solution for
multi-center collaboration, enabling reliable prognosis without requiring domain-
specific fine-tuning.
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