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Abstract. Counterfactual medical image generation have emerged as
a critical tool for enhancing Al-driven systems in medical domain by
answering "what-if" questions. However, existing approaches face two
fundamental limitations: First, they fail to prevent unintended modifica-
tions, resulting collateral changes in demographic attributes when only
disease features should be affected. Second, they lack interpretability
in their editing process, which significantly limits their utility in real-
world medical applications. To address these limitations, we present
InstructX2X, a novel interpretable local editing model for counterfac-
tual medical image generation featuring Region-Specific Editing. This
approach restricts modifications to specific regions, effectively preventing
unintended changes while simultaneously providing a Guidance Map that
offers inherently interpretable visual explanations of the editing process.
Additionally, we introduce MIMIC-EDIT-INSTRUCTION, a dataset for
counterfactual medical image generation derived from expert-verified
medical VQA pairs. Through extensive experiments, InstructX2X achieve
state-of-the-art performance across all major evaluation metrics. Our
model successfully generates high-quality counterfactual chest X-ray im-
ages along with interpretable explanations, as validated by experienced
radiologists. Our code and dataset are publicly available at https://
github.com /hgminn /InstructX2X.
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1 Introduction

Counterfactual medical image generation is an emerging approach that enhances
Al-driven high-stakes medical decision-making. This methodology aims to an-
swer what-if questions such as "How would this medical image change if the pa-
tient had a different disease?" [9,27]. By precisely manipulating target features
in medical image while preserving unrelated attributes, this technique generates
realistic edited images and helps uncover causal structures or biases in AI mod-
els. Counterfactual medical image generation offers various applications, such as
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Fig. 1. Comparison of counterfactual medical image generation results between exist-
ing methods and our proposed approach. When adding edema features to an input
chest X-ray image, existing methods (a—d) demonstrate unintended modifications (red
arrows), causing significant variations in age and race (note the demographic predic-
tions below each image). In contrast, InstructX2X preserves the demographic attributes
while achieving precise editing and provides a visual explanation via guidance map (red
overlay).

evaluating model robustness [23], providing counterfactual explanations [9,4,26],
enhancing classifier performance [27,19], and detecting anomalies [11,25].

Despite the promising applications of counterfactual medical image genera-
tion, several technical challenges remain unresolved. A critical issue is the unin-
tended modification of unrelated attributes when manipulating target features.
In the context of chest radiography, Figure 1 illustrates such failure cases: when
adding the edema feature to the input chest X-ray image, methods (a-c) alter the
racial characteristics, while method (d) significantly changes the age attribute,
despite the fact that these demographic attributes are independent of the edema
features. Such unintended modifications distort the original clinical presentation
and compromise the validity of the generated images [29].

Another critical challenge in counterfactual medical image generation is a
lack of interpretability. Interpretability (such as visual explanation) helps users
to understand the model’s decision-making process and validate the appropri-
ateness of modifications [9,2]. Current methods predominantly adopt post-hoc
explanation techniques for model interpretation [5,13]. Although visually com-
pelling, recent studies have demonstrated that these explanations frequently fail
to represent the true decision mechanisms of the underlying models [14,28,24,27].
Such unreliable interpretability severely restricts the utility of counterfactual im-
ages for both clinical applications and model evaluation [7,24,2].

To address these two critical limitations, we propose InstructX2X, a novel
interpretable local editing model for counterfactual medical image generation.
Our model introduces a Region-Specific Editing approach that restricts editing
to specific regions, preventing unintended modifications. Our targeted editing
mechanism excludes potential spurious correlations outside the region of inter-
est, resulting in highly reliable counterfactual images. Additionally, our region-
specific editing methodology provides a Guidance Map, visualized as the red
overlay in Figure 1(e), which highlights the modified areas, offering clear visual
explanations of how the model processes the editing instructions. InstructX2X
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achieves inherent interpretability by directly revealing the decision mechanism
to users, eliminating the need for post-hoc explanations of uncertain reliability.

Furthermore, the development of reliable counterfactual medical image gen-
eration has been constrained by the scarcity of datasets with reliable editing
descriptions. To overcome this data deficiency, we repurpose an existing dataset
from a different task domain into MIMIC-EDIT-INSTRUCTION, a new coun-
terfactual medical image generation dataset. We leverage expert-verified medical
VQA pairs, unlike existing approaches that depend on large language models to
generate editing descriptions without clinical validations [13,8].

The key contributions of our research are:

1. We propose a novel interpretable local editing model, InstructX2X, which
effectively addresses existing challenges in counterfactual medical image gen-
eration.

2. We introduce innovative region-specific editing technique to ensure precisely
controlled modification and enhance interpretability by providing guidance
map.

3. Werelease MIMIC-EDIT-INSTRUCTION, instruction-based editing dataset
for counterfactual medical image generation derived from expert-verified
medical VQA pairs.

4. InstructX2X demonstrates state-of-the-art performance through extensive
experiments, as well as clinically significant interpretability validated by ra-
diologist evaluations.

2 Method

The design of InstructX2X is outlined in Figure 2. In this section, we describe the
construction of the MIMIC-EDIT-INSTRUCTION dataset and elaborate on the
concept of Region-Specific Editing with the visual explanation Guidance Map.

2.1 Dataset preparation

InstructX2X utilizes three publicly available datasets: MIMIC-CXR [18], MIMIC-
Dift-VQA [15], and MS-CXR [6]. MIMIC-CXR contains 377,110 chest X-ray
images and 227,827 radiology reports from 63,478 patients, while MIMIC-Diff-
VQA builds upon it with 164,324 pairs of longitudinal chest X-rays and 700,703
expert-verified question-answer pairs. MS-CXR provides phrase grounding with
1,162 radiologist-annotated image-sentence pairs across eight diseases.

From MIMIC-Diff-VQA, PA view image pairs are selected and resized to
512 x 512. Registration is performed with SimpleITK [21] following BioViL-
T [3], and pairs with low scores are discarded. Only Difference type questions
are included, excluding ‘nothing has changed’ answers. Class imbalance is ad-
dressed by undersampling CheXpert [17] ‘no finding’ cases. Using MIMIC-CXR’s
official split with P19 as holdout, the final dataset comprises 11,703 training, 200
validation (official split), and 1,933 test (holdout set) samples.



4 Min H. et al.

Training Pipeline Inference Pipeline
(a) Dataset Construction (c) Region-Specific Editing

Past Description: 1. /nterval near-complete Input Image, 1 Instruction, T Pseudo Set

resolution of the apical and retrosternal components...
“Add the
finding of
”
Expert-verified MIMIC-DIFF-VQA dataset

the level of has from small to ‘—'

moderate. the main image has an finding of ] Guid Guid
than the reference image. the main image is Relevance Mpseudo | LD QUEETES
the finding of . than the reference image. Map, R P i Map, G Mask, M

Ipast

I Current Description : /n comparison with the study of
oun ___ there s little interval change. Moderate bilateral...

MIMIC-EDIT-INSTRUCTION
“Change the level of } from
small to moderate. Add the finding of

. Remove the finding of

b; ModelTraInln
- past N I Input Image, I ol

L1 -
Latent Diffusion Trained Latent Diffusion

Fig. 2. Overview of our InstructX2X framework. (a) Dataset construction process
that converts expert-verified VQA pairs into MIMIC-EDIT-INSTRUCTION data. (b)
Training pipeline where model learns to transform I,qs¢ to Icur using constructed in-
structions. (c) region-specific editing approach that enables precise and interpretable
image editing.
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2.2 Dataset Construction

Existing approaches often use LLMs to generate editing descriptions [13,8], but
the lack of expert validation may result in clinical inaccuracies. To address this
issue, we repurpose the MIMIC-Diff-VQA dataset, which provides expert-verified
descriptions of temporal changes in chest X-rays with a 97.33% validation rate.
This dataset serves as a reliable source for constructing image-editing instruc-
tions—beyond its original VQA purpose. We identified three core operations
that form an intuitive instruction of medical image modifications:

— Add: Introducing new findings or symptoms.
— Remove: Eliminating existing findings or symptoms.
— Change the level: Adjusting the severity level of present abnormalities.

As illustrated in Figure 2(a), this expert-verified approach eliminates the need
for LLMs in instruction construction by employing a rule-based conversion of
difference descriptions. By decomposing complex medical changes into these in-
structions, we establish MIMIC-EDIT-INSTRUCTION, a new dataset for coun-
terfactual medical image generation that maintains clinical precision while pro-
viding more precise and intuitive control [§].

2.3 Region-Specific Editing

region-specific editing prevents unintended modifications by precisely editing
target regions. This method provides inherent interpretability by generating a
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guidance map, where the explanation directly reveals the decision process [27]. As
shown in Figure 2(c), our approach combines model-derived relevance maps [22]
with dataset-derived pseudo masks to achieve precise and interpretable editing.

During inference, our region-specific editing process works as follows. First,
given an input image I and an edit instruction 7', we encode I into the la-
tent space and inject a fixed amount of Gaussian noise at a chosen diffusion
timestep ¢,..;. We then compute two noise predictions by feeding (z,.,,I,T) and
(2t,.,, 1,7 ="") into €g. The relevance map (R) is obtained as the normalized
absolute difference between these two predictions (e r(z,.,).€1(%t,.,)), which
highlights regions that require modification according to the edit instruction [22]:

Ry 1 r = normalize|er 7(zt,,,) — €r(2t,..,)|- (1)

Next, to precisely localize anatomical regions associated with pathological
findings, we incorporate expert-annotated bounding boxes from the MS-CXR
dataset to create anatomically-aware pseudo mask. For each of the eight findings,
we create individual pathology masks by taking the outer union of overlapping
bounding box annotations, forming a pseudo set of eight masks. During inference,
the final pseudo mask is generated by selecting each pathology mask from pseudo
set that corresponds to the findings mentioned in the editing instruction, and
then merging them into a single mask. For findings outside the eight annotated
categories, we employ a 512 x 512 mask.

The final guidance map G is computed by multiplying R with the final pseudo
mask Mpseudo- @ denotes element-wise multiplication:

G = Mpseudo O] Rx,I,T7 (2)

By this multiplication, the guidance map G effectively integrates (i) the model-
identified regions to modify from the relevance map with (ii) the disease-related
anatomical locations from the pseudo mask. The guidance map then represents
pixel-wise information about precisely localized regions that align with editing
instructions, serving as a visual explanation of the editing process for users.

We apply a threshold 7 on G to form a binary editing mask M, ; r = 1(G >
7). In each denoising iteration, we keep the unmasked regions identical to the
input image by maintaining identical noise pixels in these areas throughout all
steps. This approach prevents any modifications outside the region of inter-
est to avoid unrelated spurious correlations. Furthermore, region-specific editing
method supports user-defined mask specifications in place of Mgcudo, enabling
flexible control over editing process and cross-domain adaptability without ar-
chitectural modifications.

3 Experiment

Implementation details Our model builds upon the pretrained Instruct-
Pix2Pix [8]. The architecture employs a frozen CLIP text encoder and a U-Net
backbone, processing triplet data (Ipast, leur, I') from longitudinal chest X-ray



6 Min H. et al.

Input Image Edited Image Guidance Map
the findings of
sion and atelectasis.”

Input Image Edited Image Guidance Map

“Remo

“Remove the finding of atelectasis.”

- e
Guidance Map

Input image Edited Image Guidance Map

“Change the level of
pleural effusion from small to moderate.”

Input image Edited Image

“Add the findings of
pleural effusion and cardiomegaly.”

Fig. 3. Examples showing InstructX2X’s editing capabilities. Left: Single-finding edit-
ing examples. Right: Multi-finding editing examples. Each case includes input image,
edited result, and guidance map visualization (red overlay) showing modified regions.

Table 1. Comparison of InstructX2X with baseline methods across CMIG, KL diver-
gence, and FID metrics. GT refers to Ground Truth. Best results are shown in bold.

CMIG (1

Model Patho (1) Race (1) A(gg mTemic (] ¥ )| FID ()
Real images(GT) | 84.15 99.60  88.62 90.77 - -

Roentgen 82.87 50.48 18.71 65.63 51.71 | 35.96
LLM-CXR 74.46 51.79 9.92 61.95 51.69 | 54.96
Radedit 83.26 81.82  46.56 80.81 39.01 | 28.40
BiomedJourney 80.44 83.23  68.95 81.47 22.18 | 13.77
InstructX2X 80.76 98.81 83.91 88.03 9.69 | 2.88

Table 2. Ablation study on the effects of region-specific editing components on model
performance. RelMap refers to Relevance Map and PsMask refers to Pseudo Mask.
Best results are shown in bold.

Guidance CMIG (1
Model RelMap PsMask|Patho Race A(gez vt KL (D[ FID ()
@ 80.64 90.43 76.17] 84.68 | 21.26 | 11.76
(b) v 79.93 97.58 82.50| 87.06 | 10.92 | 3.95
(©) v | 8024 9827 83.29| 87.47 | 13.72 | 2.89
InstructX2X | v v | 8076 98.81 83.91| 88.03 | 9.69 | 2.88

pairs and editing instructions, as shown in Figure 2(b). Model trained on 8 A100
GPUs for 4,500 steps with learning rate 1 x 10™* and batch size 576. During
inference, we set 7 = 0.1 and fix s; = 1.5 and s = 7.5.

Baselines We compare against four baseline models: RoentGen [5], a high-
quality chest X-ray image generation model from descriptions; LLM-CXR [20],
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a text-only LLM for CXR vision tasks; BiomedJourney [13], a model that lever-
ages GPT-4 [1] to generate disease progression; and RadEdit [23], a model using
multiple masks to ensure consistency. For fair comparison, RoentGen and LLM-
CXR (both originally designed for CXR generation, not editing) use provided
impressions section in MIMIC-CXR reports, BiomedJourney uses GPT-4 gener-
ated descriptions following their implementation, and RadEdit uses impressions
and the same pseudo mask as our region-specific editing method.

Metrics We evaluate using the CMIG score [13], KL divergence [13] and FID.
CMIG score combines pathology classification accuracy (using DenseNet-121
from XRV [10]) with the preservation of demographic attributes, specifically
race [12] and age [16]. These measurements are integrated through geometric
means to ensure robustness across different scales. For pathology classification,
we focus on five specific findings: Atelectasis, Cardiomegaly, Edema, Pleural Ef-
fusion, and Pneumothorax. KL divergence measures the distribution difference
between real and generated images’ pathology classifications, identifying poten-
tial evaluation bias that may inflate performance metrics. FID computed with
DenseNet-121 [10] evaluates the visual quality and realism of generated images.

3.1 Results

Table 1 shows InstructX2X’s performance compared to previous methods. Our
model achieves a CMIG score of 88.03, approaching real test images (90.77). This
demonstrates our model’s ability to perform precise modifications while preserv-
ing patient-specific attributes. Our method maintains near-real image levels in
both race (98.81 vs 99.60) and age (83.91 vs 88.62) preservation, while achiev-
ing competitive pathology modification (80.76). Furthermore, the significantly
lower FID score (2.88) demonstrates our model’s superior ability to generate
high-quality, realistic images.

In contrast, other methods show significant imbalances. Despite achieving
higher pathology scores (Roentgen: 82.87, RadEdit: 83.26), they exhibit sub-
stantial degradation in preserving patient characteristics, suggesting a trade-
off between modification accuracy and unrelated attribute preservation. Their
large KL divergence values (Roentgen: 51.71, RadEdit: 39.01) suggest that their
pathology performance could be inflated. it represents a significant discrepancy
in predicted distributions when applying the same classifier to both generated
and real images. InstructX2X’s significantly lower KL divergence (9.69) shows
our method avoids such inflation while achieving competitive pathology scores.

Building on the strong quantitative performance discussed above, Figure 3
offers visual evidence of InstructX2X’s capabilities in both single-finding and
multi-finding modification scenarios. The examples demonstrate the model’s
ability to execute diverse radiological manipulations with high precision. The
distinctive feature of our approach lies in its targeted editing capability, as shown
by modifications that occur exclusively within the instruction-specified region.
The accompanying guidance maps (red overlays) precisely highlight the regions
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of interest, providing transparent visual interpretations of the model’s editing
process—for example, targeting the lung bases for pleural effusion and the car-
diac silhouette for cardiomegaly.

3.2 Radiologist Assessment

Two board-certified radiologists (with 11 and 12 years of experiences, respec-
tively) evaluated our model using 40 diverse image pairs selected from our test
set. For each pair, radiologists reviewed input, edited, and guidance-map images
(120 images total) across five key findings: pleural effusion, cardiomegaly, edema,
pneumothorax, and atelectasis. Using a 5-point likert scale, radiologists assessed
both performance (natural disease progression and accurate modifications) and
interpretability (effectiveness of guidance maps in explaining editing decisions).
Both experts gave moderately favorable scores on both performance (M = 3.59,
SD = 1.11) and interpretability (M = 3.45, SD = 1.17), indicating the model’s
ability to generate consistent and reliable modifications along with meaningful
visual explanations.

3.3 Ablation studies

Table 2 presents ablation studies that analyze the effectiveness of our region-
specific editing method: (a) the trained latent diffusion model without any
region-specific editing components, (b) with only the relevance map, (c) with
only the pseudo-mask and our full model (InstructX2X) incorporating both
components. The results demonstrate the efficacy of our region-specific editing
approach. Model (a) shows moderate performance across metrics, while the in-
corporation of relevance map (b) significantly improves feature preservation and
reduces KL divergence (10.92). Model (c) with pseudo mask shows improved
retention of patient characteristics (race: 98.27, age: 83.29) and image quality
(FID: 2.89). Our full model synergistically combines these benefits, achieving
optimal performance across metrics (CMIG: 88.03).

4 Conclusion

InstructX2X addresses two critical limitations of counterfactual medical im-
age generation: unintended modification and insufficient interpretability. Our
Region-Specific Editing approach achieves precise feature modification while pre-
serving unrelated attributes, constraining the influence of spurious correlations
during image generation. The Guidance Map offers transparent visual explana-
tions of the modification process, providing inherent interpretability rather than
post-hoc explanations of uncertain reliability. By introducing the instruction-
based MIMIC-EDIT-INSTRUCTION dataset, we establish a more reliable foun-
dation for future work. InstructX2X not only demonstrates state-of-the-art per-
formance across multiple metrics, but it also confirm its clinical validity and
explainability via radiologist assessments. These innovations collectively elevate
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counterfactual medical image generation for high-stakes clinical applications and
AT model validation.
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