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Abstract. Depth information is essential for 3D reconstruction in surgi-
cal scenes. Depth-pose-based self-supervised monocular depth estimation
has advanced significantly but faces two challenges in laparoscopic scenes,
leading to unreliable pixel matching during training. This also results in
depth maps failing to preserve geometric structure when back-projected
into 3D space. Second, limited movement space necessitates that laparo-
scopic motion involves pure complex rotations. It further complicates
the relative pose estimation between adjacent views. To address these
issues, we propose a novel self-supervised monocular depth estimation
method guided by geometric constraints. We incorporate surface nor-
mal estimation with depth-normal consistency to establish a geometric
constraint for predicted depth maps. Furthermore, we propose an uncer-
tainty measure based on the distance from 3D points to a synthesized
plane, reducing conversion bias from depth to normals. Moreover, we
optimize pose estimation using a feature-matching process with a 4D
score volume. Our method reduced absolute relative error by 19.0% and
3D completeness by 23.9% over the baseline. Our code is available at
https://github.com/MoriLabNU/GSPDepthL.
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1 Introduction

Depth information plays a crucial role in mapping surgical fields in robotic-
assisted minimally invasive surgery (RAMIS) and augmented-reality-assisted
minimally invasive surgery (ARAMIS) [7,14,16]. It is used to create realistic
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3D scenes and 3D models for surgical navigation and surgeon training. Monoc-
ular depth estimation (MDE) predicts a pixel-level depth map from a single
image, and learning-based approaches have seen significant advancements.

Supervised learning requires extensive annotated data with complex network
architectures, which is both costly in terms of time and resources for depth value
collection and training [17]. To address this, researchers explored self-supervised
methods for MDE. Zhou et al. [26] first introduced depth-pose self-supervised
MDE, completing a pixel matching process between adjacent images based on
predicted relative poses. Godard et al. [3] optimized this work by minimizing
reprojection error and established a widely used baseline. Subsequent innovations
in self-supervised MDE have included approaches that leverage segmentation [4],
multi-frame constraint [19] and transformer [24]. Recently, self-supervised MDE
has been developed for laparoscopic scenes. Huang et al. [6] leveraged 3D points
for self-supervised MDE using stereo datasets rather than monocular scenes.
Shao et al. [18] proposed an appearance module to realize brightness consistency
for laparoscopic scenes. Li et al. [11] employed block matching instead of pixel
matching to improve depth estimation on smooth surfaces. Cui et al. [2] first
introduced foundation models for self-supervised MDE.

Existing self-supervised MDE faces two key challenges in laparoscopic scenes.
First, homogeneous textures and colors on organ surfaces reduce photometric er-
ror, even with incorrect pixel matching. It also leads to depth maps that lack
geometric structure when back-projected depths to 3D space. Second, due to
the limited space for movement, the laparoscope’s motions involve many pure
complex rotations. Pure complex rotations without translations increase the diffi-
culty of pose estimation. As an earlier work, Yang et al. [22] proposed edge-aware
depth-normal consistency for autonomous and indoor scenes, but the smoothness
of laparoscopic images makes edge detection more difficult. AF-SfMLearner [1§]
and MGMNet [11] improved depth predictions on smooth surfaces but over-
look the geometric structure of the estimated depth maps. GCDepthL [10] en-
forced consistency between the predicted scene coordinates and depth maps,
applying a per-point constraint highly susceptible to noise. In addition, many
previous methods [13,18, 11] did not explicitly address pose estimation, despite
its challenges in laparoscopic datasets. GCDepthL [10] optimized pose estima-
tion similarly to stereo matching, but pure complex rotations in laparoscopic
scenes further complicate the process. To address these challenges, we introduce
a depth-normal consistency framework with a novel distance-based uncertainty
mechanism, thereby enhancing the robustness of depth estimation. This consis-
tency enforces smoothness of local depth variations through a depth-to-normal
transformation while maintaining global geometric constraints. In addition, we
incorporate feature-matching into the pose estimation through a 4D score vol-
ume. This approach leveraged the spatial information between the feature maps
extracted from adjacent images.

Our main contributions are summarized as follows. (i) We introduce surface
normal estimation and build the depth-normal consistency to guide monocular
depth estimation and provide geometric constraints. (ii) We model an uncer-
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tainty map for the depth-normal consistency to alleviate bias when converting
the depths to normal vector in a local region. (iii) We propose a feature-matching
process by calculating the 4D score volume to optimize the pose estimation.

2 Method
2.1 Self-supervised MDE with 4D Score Volume

Following the previous method [3], we consider the self-supervised MDE as the
view-synthesis problem. As shown in Fig. 1, the inputs of the whole network are
target image I from the view at time ¢ and source images I; from the adjacent
view at time s. Time s is time ¢ — 1 or time ¢ + 1.

As shown in Fig. 2 (a), previous methods [10, 18] estimate the relative pose
without considering spatial information between adjacent images. Therefore, we
introduce a 4D score volume into the pose estimation network. As shown in
Fig. 2 (b), we firstly use the feature extractor to obtain the feature maps F; and
F, from the target image I; and source images I;. Then, we calculate the 4D
score volume to implicitly complete feature-matching based on F; and F; by
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where p_ and g, are pixels’ 2D coordinates on the channel with index c of feature
maps F; and Fy. C' is the number of channels of a feature map. Then we input
F; and F; and normalized 4D score volume V to pose estimation network. The
output is the transformation matrix T;_,s, which represents the relative pose of
the laparoscope from the view at time ¢ to the adjacent view at time s.

The predicted transformation matrix T;_,, and the laparoscope’s intrinsic
parameters K are used for pixel matching between the target image I, and
source images I,. Given a pixel at p, in I, its corresponding coordinate in I is
computed as:

vP.4d. —

(1)

b = KTtﬂsttK_lpta (2)

where Df)t is the depth at p, in Dy, and K is a 4 x 4 intrinsic matrix. The syn-
thesized frame I,_,; is obtained by warping I, and the difference between I; and
I, serves as a supervision signal. Following Monodepth2 [3], the photometric
error is defined as:
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where Ig) and IP_, is the value at the 2D coordinate p in I; and I,_,;. SSIM is

s—t
local structural similarity, and « is set to 0.85. The minimum reprojection error

is defined as:

Itp - Ig’—n‘,

;3

o),

1

L=
[H]

> minE (I, Lo, p), (4)
peH
where p is the 2D coordinate of a pixel. H is a set including all pixels’ 2D

coordinates. |-| represents Cardinal function.
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Fig. 1. Overview of our self-supervised monocular depth estimation framework. The
proposed method consists of a monocular depth estimation network, a pose estimation
network, and a normal estimation network. Normal map includes the components of
the normal vector in three channels. C';, H and W are the channel number, height and
width of feature maps. 4D score volume has a size of H x W x H x W.

2.2 Depth-normal Consistency under Distance-based Uncertainty

To enforce geometric constraints in depth estimation, we introduce surface nor-
mal estimation and establish depth-normal consistency, as shown in Fig. 1. A
normal map encodes surface normals at each 3D point, computed by fitting a
local plane to its neighbors. This consistency enforces smooth depth variations
by converting depth values into surface normals based on local regions. We then
back-project the estimated depth map D into 3D space using the laparoscope’s
intrinsic matrix K by

PP = K'Df"p,, (5)

where P is the point cloud consisting of 3D points. PP+ is back-projected 3D
points corresponding to the 2D coordinates p, in D;. As shown in Fig. 3 (a), we
convert the back-projected 3D points to normal map N by

(PP" - Pp) x (ij - PP)

1
e e ]

where 2 is the set of 2D coordinates of eight surrounding pixels centering on
the pixel with 2D coordinate p. p* and p’ are different surrounding pixels’ 2D
coordinates, belonging to set €. x is the cross product. N is normal maps consist
of normal vectors n.

The assumption of conversion from 3D points into a normal vector is that all
points within a local region lie on the same plane. However, this assumption is
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Fig. 2. Pose Estimation Process. (a) Previous pose estimation process. (b) Proposed
pose estimation process with 4D score volume based on feature-matching.

compromised due to object boundaries and inaccurate predictions. As shown in
Fig. 3 (b), we model an uncertainty map based on the distances of points within
the local region to the synthesized plane to mitigate this impact by

0 SN ) o

where U is the uncertainty map. p* are 2D coordinates of surrounding pixels,
belonging to set 2. As shown in Fig. 1, we adopt a normal estimation network
to predict normal maps N; and Ny from target image I; and source image I;.
The loss function for the depth-normal consistency is defined by

£~ g 3 (1 08) (1 NENP) 0 07) (1 NE W),

where p is 2D coordinates of pixel in the normal map. H is a set that includes
all pixels’ 2D coordinates in the normal map. Ny ; and N}, 5 are the normal maps
converted from the predicted depth maps D; and D,. U; and U, are uncertainty
maps based on N¢ and N?. - is the dot product. We adopt a negative cosine
loss [17] as Eq. 8 for normal supervision and minimize the distance of 3D points
from adjacent views as normal by

L= 2 (1-NP WD) ©)

peH

where Ng_,; is the synthesized normal map and transformed 3D points from
N, based on the pixel-matching process and coordinate system transformation.
Our final loss is Ly = L, + ALc + vLp + pLs+EL,, where L, is the smoothness
term for the predicted depth maps [3] and £, is the point cloud consistency as
MGMNet [11].
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Fig. 3. Visualization depicting (a) the conversion from 3D points to normal vector
and (b) the modeling of the uncertainty based on distance. (a) We use the various
combinations of surrounding points to obtain normal vectors as n¢ and n?. And average
them as the final normal vector n corresponding to the center 3D points. (b) We model
the uncertainty based on the distance of 3D points to synthesized plane 7 from (a).

3 Experiments and Results

3.1 Datasets and Evaluation Metrics

We conducted all experiments on the SCARED [1] and Hamlyn datasets [15].
SCARED consists of nine laparoscopic scenes, and we followed the dataset splits
used in AF-SfMLearner [18]. Hamlyn datasets provides laparoscopic videos pro-
cessed by Recasens et al. [15] to create ground truth. Following Monodepth2 [3],
we split the Hamlyn dataset into a training set (21,090 frames) and a testing
set (2,014 frames), ensuring that the training and testing scenes are distinct.
All images were resized to 320x256 due to computational constraints. We eval-
uated depth predictions using three 2D metrics [3] and assessed back-projected
3D points with two 3D metrics [11]. During testing, only the depth estimation
network was used, taking a single image as input.

3.2 Implementation Details

We re-trained all models by PyTorch with the Adam optimizer [8] for 30 epochs.
The learning rate was set at 1 x 10~4, with a reduction by a factor of 10 after
15 epochs. The training utilized a batch size of 12, and the total loss function
parameters, A, v, 4, and £ were designated as 0.01, 0.01, 0.001, and 0.001. Fur-
thermore, we cap the depth values at 150 mm and 180 mm for SCARED [1]
and Hamlyn [15]. The model was conducted on an NVIDIA Quadro RTX 6000
GPU for 15 hours. Following Monodepth2 [3], all encoder modules incorporated a
ResNet-18 with pre-trained weights from the ImageNet dataset [3]. Our decoder
followed the design outlined in Monodepth2 [3].

3.3 Comparison Evaluation

We compared the proposed method with several existing approaches [2, 3,5, 9-13,
18-21, 23-25]. We retrained them three times with different seeds on SCARED [1]
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Table 1. Quantitative comparison for predicted depths and back-projected 3D points
on SCARED and Hamlyn. The best results are bold. The second-best results are un-
derlined. * denotes the backbone is foundation models as EndoDAC [2].

Datasets SCARED Hamlyn

2D Metrics 3D Metrics 2D Metrics 3D Metrics
Abs Rel] RMSE| v < 1.251|Comp.] Recallt|Abs Rel] RMSE] v < 1.257|Comp.] Recallt
Monodepth2 [3] 0.076 6.127 0.942 3.755  0.646 0.176  16.406  0.754 7.137  0.340

Metrics

HRDepth [12] 0.072  5.787 0.950 3.364 0.672 | 0.171 15.627  0.755 6.696  0.347
Manydepth [19] 0.070  5.787 0.957 3.363 0.669 | 0.166 15.477 0.764 6.607  0.362
DIFFNet [25] 0.066  5.702 0.958 3.085 0.687 | 0.168 15.409  0.759 6.629 0.344
MonoViT [24] 0.070  5.707 0.954 3.437 0.688 | 0.175 16.254  0.752 6.955  0.350

BRNet [5] 0.074  6.367 0.943 3.501  0.649 | 0.163 15.013  0.768 6.476  0.348
Lite-Mono [23] 0.070  6.133 0.951 3.246  0.680 | 0.169 15.336 0.772 | 6.654 0.351

SCDepth [9] 0.071 5.788 0.950 3.461 0.674 | 0.184 16.961 0.724 6.981  0.330

Endo-SLAM [13] 0.064  5.743 0.959 2.776  0.733 | 0.181 16.229  0.704 6.742  0.307
AF-SfMLearner [18]| 0.066  5.608 0.957 3.234 0.703 | 0.169 15.862 0.739 6.577  0.342
GCDepthL [10] 0.062  5.851 0.958 2.625 0.729 | 0.162 14.762  0.749 5.881  0.399

MGMNet [11] 0.063 5.696 0.958 2.798 0.717 | 0.159 14.553  0.770 6.114  0.369
Baseline 0.068 6.562 0.951 3.117  0.703 | 0.172 16.703  0.639 6.940  0.343
Ours 0.055 4.800 0969 | 2435 0.777| 0.143 13.142 0.795 | 5.202 0.437
EndoDAC |2] 0.054  4.546  0.976 | 2.442 0.767 | 0.159 13.047 0.776 7.129  0.337
DA [20]* 0.059  4.980 0.967 2.748 0.740 | 0.161 12.693 0.744 6.418  0.348
DAV2 [21]* 0.079 6.413 0.942 3.777 0.615 | 0.158 12.643 0.750 6.391  0.340
Ours” 0.049 4.022 0981 | 2.045 0.805| 0.127 10.076 0.810 | 5.005 0.451

and Hamlyn [15] and reported the mean of the results in Tables 1 and 2. Table 1
presents the quantitative results for depth maps and back-projected 3D points
on 2D and 3D metrics. The baseline of the proposed method is Monodepth2 [3]
with the Siamese pose process proposed by GCDepthL [10]. In addition, we
evaluated depth prediction accuracy in different laparoscopic scenes using error
maps based on absolute relative error [19], as shown in Fig. 4. Furthermore,
we tested our method with the same foundation model as EndoDAC|2] and
compared it against other foundation-based methods [2, 20, 21].

3.4 Ablation Study

We performed the ablation study based on ten 2D and 3D metrics for depth
estimation and back-projected 3D points to analyze the impact of the compo-
nents in the proposed method. Table 2 presents the results of our method, which
incorporates four proposed components: surface normal, distance uncertainty,
normal loss, and 4D cost volume. Since the surface normal was introduced to
build the depth-normal consistency, the component named surface normal also
included depth-normal loss. Normal loss is denoted as normal consistency loss.

4 Discussion and Conclusion

Due to the characteristics of laparoscopic scenes, previous self-supervised MDE
methods perform poorly on laparoscopic datasets. As shown in Table 1, exist-
ing methods designed for autonomous driving and indoor datasets [3,5,12,19,
23-25, 20, 21] struggle in laparoscopic scenes compared to laparoscopic-specific
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Fig. 4. Comparison of qualitative results for depth estimation. Row 1 shows the input
images and the obtained uncertainty map. Rows 2 through 6 depict the estimated
depth maps and the error maps calculated by the absolute relative error metric.

foundation models [2,9-11, 13, 18]. However, prior laparoscopic approaches |2,
9-11,13, 18] also exhibit limitations, particularly in 3D metrics based on the
3D points back-projected from the predicted depth maps. As show in Table 1,
the proposed method not only enhances depth prediction accuracy outperforms
existing methods in 3D evaluation on the SCARED and Hamlyn datasets, as
shown in Table 1. Notably, despite not using a foundation model as a back-
bone, the proposed method surpasses foundation-based approaches [2,20, 21| in
3D metrics. When adopting the same foundation model as EndoDAC [2], the
proposed method further improves both 2D and 3D performance compared to
other foundation-based approaches [2,20,21]. As shown in Table 2, each pro-
posed component contributes to performance improvements (IDs 1-5). And the
full model achieved the best results (IDs 1-6). The ablation study shows that
the 4D cost volume enhances performance compared to the baseline (IDs 1 and
4). And it also highlights that surface normal estimation with distance uncer-
tainty and normal loss, plays a more significant role in 3D metrics compared
to 4D cost volume (IDs 4 and 5). And in the surface normal consistency com-
ponent, the distance uncertainty is the primary contributing factor (IDs 2-4).
The proposed method produces smoother depth maps with lower errors com-
pared to existing methods [3, 10,11, 18, 24], as shown in Fig. 4. The uncertainty
maps indicate higher uncertainty at object edges because the depth-to-normal
conversion assumes that the 3D points are in the same plane in a local region.
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Table 2. Ablation study with 2D and 3D metrics on SCARED. The best results are
bold. The second-best results are underlined.

Components 2D Metrics 3D Metrics

e Dt om0 o e Rt S < 125 {Comp.
1 0.067 5.539 0.952 3.117  0.703
2 v 0.061 5.228 0.957 2.796  0.745
3 v v 0.058 4.986 0.964 2.625  0.764
4 v v v 0.057 4.881 0.967 2.558  0.768
5 v 0.061 5.136 0.958 2.840 0.738
6 v v v v 0.055 4.800 0.969 2.435 0.777

In conclusion, we analyze the challenges of applying self-supervised MDE to
laparoscopic images. We introduce the surface normal estimation and propose
a consistency between the predicted depths and the surface normal. We also
optimize pose estimation with a 4D score volume based on the feature maps
extracted from adjacent images. Experimental results demonstrate that the pro-
posed method had superior 2D and 3D performance, with smoother depth maps
and lower errors compared to existing methods. Further efforts will focus on
addressing not only smooth regions but also highly folded organs, overlapping
structures, and other complex anatomical surfaces.

Acknowledgments. The authors are grateful for support from the JST CREST
Grant Number JPMJCR20D5; the MEXT/JSPS KAKENHI Grant Numbers
24H00720, 17H00867, 26108006, and 21K19898; the JSPS Bilateral International
Collaboration Grants; and the CIBoG program of Nagoya University with funds
from the MEXT WISE program.

Disclosure of Interests. The authors have no competing interests to declare
that are relevant to the content of this article.

References

1. Allan, M., Mcleod, J., Wang, C., Rosenthal, J.C., Hu, Z., Gard, N., Eisert, P.,
Fu, K.X., Zeffiro, T., Xia, W., et al.: Stereo correspondence and reconstruction of
endoscopic data challenge. arXiv preprint arXiv:2101.01133 (2021)

2. Cui, B., Islam, M., Bai, L., Wang, A., Ren, H.: EndoDAC: Efficient adapting
foundation model for self-supervised depth estimation from any endoscopic camera.
In: Medical Image Computing and Computer Assisted Intervention, LNCS. vol.
15006, pp. 208-218. Springer (2024)

3. Godard, C., Mac Aodha, O., Firman, M., Brostow, G.J.: Digging into self-
supervised monocular depth estimation. In: Proceedings of the International Con-
ference on Computer Vision. pp. 3828-3838 (2019)

4. Guizilini, V., Hou, R., Li, J., Ambrus, R., Gaidon, A.: Semantically-guided
representation learning for self-supervised monocular depth. arXiv preprint
arXiv:2002.12319 (2020)



10

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

W. Li et al.

Han, W., Yin, J., Jin, X., Dai, X., Shen, J.: BRNet: Exploring comprehensive
features for monocular depth estimation. In: Proceedings of European Conference
on Computer Vision. pp. 586-602 (2022)

Huang, B., Zheng, J.Q., Nguyen, A., Xu, C., Gkouzionis, I., Vyas, K., Tuch, D.,
Giannarou, S., Elson, D.S.: Self-supervised depth estimation in laparoscopic im-
age using 3D geometric consistency. In: Medical Image Computing and Computer
Assisted Intervention, LNCS. vol. 13437, pp. 13-22 (2022)

Hwang, M., Seita, D., Thananjeyan, B., Ichnowski, J., Paradis, S., Fer, D., Low, T.,
Goldberg, K.: Applying depth-sensing to automated surgical manipulation with a
da Vinci robot. In: International Symposium on Medical Robotics. pp. 22-29 (2020)
Kingma, D.P., Ba, J.: ADAM: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

Li, W., Hayashi, Y., Oda, M., Kitasaka, T., Misawa, K., Mori, K.: Spatially variant
biases considered self-supervised depth estimation based on laparoscopic videos.
Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Vi-
sualization pp. 1-9 (2021)

Li, W., Hayashi, Y., Oda, M., Kitasaka, T., Misawa, K., Mori, K.: Geometric
constraints for self-supervised monocular depth estimation on laparoscopic images
with dual-task consistency. In: Medical Image Computing and Computer Assisted
Intervention, LNCS. vol. 13434, pp. 467-477 (2022)

Li, W., Hayashi, Y., Oda, M., Kitasaka, T., Misawa, K., Mori, K.: Multi-view
guidance for self-supervised monocular depth estimation on laparoscopic images
via spatio-temporal correspondence. In: Medical Image Computing and Computer
Assisted Intervention, LNCS. vol. 14228, pp. 429-439 (2023)

Lyu, X., Liu, L., Wang, M., Kong, X., Liu, L., Liu, Y., Chen, X., Yuan, Y.: HR-
Depth: High resolution self-supervised monocular depth estimation. In: Proceed-
ings of the AAAT Conference on Artificial Intelligence. vol. 35, pp. 2294-2301 (2021)
Ozyoruk, K.B., Gokceler, G.I., Bobrow, T.L., Coskun, G., et al.: EndoSLAM
dataset and an unsupervised monocular visual odometry and depth estimation
approach for endoscopic videos. Medical Image Analysis 71, 102058 (2021)

Qian, L., Zhang, X., Deguet, A., Kazanzides, P.. ARANIS: Augmented reality
assistance for minimally invasive surgery using a head-mounted display. In: Medical
Image Computing and Computer Assisted Intervention, LNCS. vol. 11768, pp. 74—
82 (2019)

Recasens, D., Lamarca, J., Facil, J.M., Montiel, J., Civera, J.: Endo-Depth-and-
Motion: reconstruction and tracking in endoscopic videos using depth networks and
photometric constraints. IEEE Robotics and Automation Letters 6(4), 7225-7232
2021

éz’mch)ez—Gonzélez, P., Cano, A.M., Oropesa, 1., Sanchez-Margallo, F.M., Pozo,
F.D., Lamata, P., Gomez, E.J.: Laparoscopic video analysis for training and image-
guided surgery. Minimally Invasive Therapy & Allied Technologies 20(6), 311-320
2011

(Shao,)S., Pei, Z., Chen, W.; Wu, X., Li, Z.: NDDepth: Normal-distance assisted
monocular depth estimation. In: Proceedings of the International Conference on
Computer Vision. pp. 7931-7940 (2023)

Shao, S., Pei, Z., Chen, W., Zhu, W., Wu, X., Sun, D., Zhang, B.: Self-supervised
monocular depth and ego-motion estimation in endoscopy: Appearance flow to the
rescue. Medical Image Analysis 77, 102338 (2022)

Watson, J., Mac Aodha, O., Prisacariu, V., Brostow, G., Firman, M.: The temporal
opportunist: Self-supervised multi-frame monocular depth. In: Proceedings of the
Conference on Computer Vision and Pattern Recognition. pp. 1164-1174 (2021)



20.

21.

22.

23.

24.

25.

26.

Enforcing Geometric Constraints for Self-supervised Depth Estimation 11

Yang, L., Kang, B., Huang, Z., Xu, X., Feng, J., Zhao, H.: Depth Anything: Un-
leashing the power of large-scale unlabeled data. In: Proceedings of the Conference
on Computer Vision and Pattern Recognition. pp. 10371-10381 (2024)

Yang, L., Kang, B., Huang, Z., Zhao, Z., Xu, X., Feng, J., Zhao, H.: Depth anything
v2. Advances in Neural Information Processing Systems 37, 21875-21911 (2025)
Yang, Z., Wang, P., Xu, W., Zhao, L., Nevatia, R.: Unsupervised learning of ge-
ometry from videos with edge-aware depth-normal consistency. In: Proceedings of
the AAAI Conference on Artificial Intelligence. vol. 32 (2018)

Zhang, N., Nex, F., Vosselman, G., Kerle, N.: Lite-Mono: A lightweight CNN
and transformer architecture for self-supervised monocular depth estimation. In:
Proceedings of the Conference on Computer Vision and Pattern Recognition. pp.
18537-18546 (2023)

Zhao, C., Zhang, Y., Poggi, M., Tosi, F., Guo, X., Zhu, Z., Huang, G., Tang, Y.,
Mattoccia, S.: MonoViT: Self-supervised monocular depth estimation with a vision
transformer. In: 2022 International Conference on 3D Vision. pp. 668—678 (2022)
Zhou, H., Greenwood, D., Taylor, S.: Self-supervised monocular depth estimation
with internal feature fusion. In: British Machine Vision Conference (2021)

Zhou, T., Brown, M., Snavely, N., Lowe, D.G.: Unsupervised learning of depth
and ego-motion from video. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. pp. 1851-1858 (2017)



