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Abstract. Phantom-less volumetric bone mineral density (vBMD) mea-
surement using computed tomography (CT) presents a cost-effective
alternative to conventional phantom-based approaches, yet faces accu-
racy challenges across varying tube voltages. Current deep learning-
based phantom-less solutions frequently overlook the critical role of fre-
quency variance-a crucial factor for precise BMD measurement and cross-
voltage generalization. We present a lightweight CT-based phantom-
free vBMD measurement framework that addresses critical limitations
in cross-voltage generalization. Core innovations include: (1) Frequency-
balancing feature modulation with multi-band fusion, preserving spectral
measurement cues; (2) A dual-branch architecture combining domain-
specific convolutions with cross-frequency interaction; and (3) Asym-
metric channel attention, which allocates attention weights based on fre-
quency characteristics, enabling adaptive emphasis on critical low- and
high-frequency components. Comprehensive evaluations across 80, 100,
and 120 kVp tube voltages demonstrate the proposed method’s superior
measurement accuracy and reliability, achieving overall mean absolute
errors of 5.990 mg/cm3 and 7.175 mg/cm3 on internal (1,614 images)
and external (2,245 images) testing sets from two centers, respectively.
These results suggest that our method offers a promising solution for
clinical PL vBMD measurement across varying CT protocols.
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1 Introduction

Bone mineral density (BMD) is a critical indicator of bone strength, with
volumetric BMD (vBMD) being vital for diagnosing osteoporosis. While tra-
ditional quantitative computed tomography (QCT) methods rely on expensive
external phantoms and frequent recalibrations, phantom-less (PL) methods of-
fer a cost-effective alternative by using internal tissues like muscle and fat as
reference points [19]. Early PL approaches derived Hounsfield Unit (HU)-vBMD
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conversion equations from reference tissues [18, 15], but the advent of artificial
intelligence, particularly deep neural networks (DNNs), has enabled more sophis-
ticated approaches. Some studies have used DNNs for volume-of-interest (VOI)
segmentation [14, 1], while others have integrated radiomics and machine learn-
ing to enhance feature extraction [9]. However, many of these methods rely on
heuristically selected features and complex workflows, limiting their efficiency
in vBMD estimation. To address this, end-to-end DNN architectures, such as
DenseNet and stacked convolutional layers, have been proposed to streamline
vBMD prediction from 2D and 3D images [22, 6].

Despite recent progress, PL methods face significant challenges in clinical ap-
plications. Most approaches are optimized for 120 kVp scans, failing to account
for the growing adoption of lower tube voltages (80-100 kVp), which reduce radi-
ation exposure to patients [8]. Models trained on 120 kVp data show substantial
performance degradation when applied to lower kVp scans due to variations in
CT attenuation [20]. This limitation is particularly evident in internal-tissue-
based PL methods, where vBMD estimation errors can reach up to 20 mg/cm3

on non-120 kVp scans [20]. As a result, existing PL approaches struggle to adapt
to the diverse imaging protocols used in modern clinical practice.

Fig. 1. Intuitive comparison of features in vBMD measurement. The first row
shows vertebral bodies with varying bone densities at 120 kVp. The second row shows
corresponding vertebral bodies at non-120 kVp, where vBMD texture remains similar,
but HU values within the VOI differ significantly. Low vBMD vertebral bodies exhibit
both reduced HU values and a sparser trabecular structure in the measurement area.

Beyond variations in scanning parameters such as lower kVp, PL methods also
face challenges inherent to osteoporosis itself. The disease progressively reduces
bone mineral content, leading to a sparser trabecular architecture [12]. While
osteoporotic bone exhibits lower mean CT values (HU) [1], trabecular micro-
architecture offers a more precise indicator of bone health [12], especially at
lower tube voltages. At these voltages, global intensity measures become less
reliable, making the extraction of subtle textural features crucial for accurate
vBMD estimation (Fig.1).

Furthermore, existing DNN architectures have inherent limitations. Many
models designed for 2D natural images prioritize low-frequency information [17],
making them less effective at capturing the high-frequency textural details that
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are critical for accurate bone density measurement. When applied to 3D medical
images, these 2D-based DNN models struggle with depth-wise feature extraction,
fail to leverage volumetric context effectively, and require excessive computa-
tional resources when extended to 3D architectures. This limitation is particu-
larly evident under varying scanning parameters, where the ability to integrate
both low- and high-frequency features is essential for maintaining accuracy.

To address these challenges, we introduce a novel DNN-based PL frame-
work for vBMD measurement that leverages high-frequency feature extraction
to enhance robustness against variations in scanning parameters. The proposed
network adapts to diverse frequency domains, ensuring greater accuracy in real-
world clinical settings. Our key contributions include:

– A novel network incorporating frequency domain modulation and a dual-
branch architecture to capture both overall bone mineral density and fine-
grained cancellous trabecular structures for vBMD measurement. The net-
work enhances feature extraction through frequency decomposition, isolating
low- and high-frequency components into distinct pathways for a more bal-
anced representation.

– An asymmetric channel attention mechanism for low- and high-frequency
modules optimizes attention weight allocation, enhancing the model’s ability
to focus on the most informative frequency components.

– Quantitative results confirm the superiority of our method on real-world
clinical data, demonstrating robustness across varying tube voltages.

2 Methods

2.1 Related Work

Recent advances in computer vision have demonstrated the potential of fre-
quency domain processing. In image restoration, Miao et al. decompose images
into low- and high-frequency components using wavelet filtering, restoring each
with diffusion models and U-shaped networks [10]. In segmentation tasks, Nam
et al. apply convolution kernels of different sizes and fuse the multi-scale features
using discrete cosine transforms [11]. Similarly, Chen et al. propose frequency-
adaptive dilation convolution, adjusting both frequency and dilation rates at the
feature map and convolution kernel levels, enhancing segmentation details [3].
For camouflaged object detection, Zhong et al. decompose features by frequency
using offline discrete cosine transforms and then implement feature enhancement
and high-order frequency channel selection [25].

These methods, though effective in leveraging high-frequency features, often
involve repeated signal processing or additional convolutional layers, increasing
complexity and computational cost, especially in 3D imaging. This limitation
underscores the need for more efficient DNN designs that can preserve high-
frequency features while balancing both low- and high-frequency components
during feature extraction and convolution. Building on these insights, we propose
a DNN architecture that emphasizes the preservation of high-frequency features
while addressing the challenges posed by varying tube voltages (Fig. 2):
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Fig. 2. The proposed network. The proposed network adopts a dual-branch ar-
chitecture consisting of four distinct modules (a). The first module is responsible for
spatial reallocation of feature maps in the frequency domain. The following modules
incorporate convolutional layers designed to perform coupling and re-decoupling oper-
ations, guided by a channel attention mechanism (b and c). This design facilitates the
effective fusion of frequency features, thereby enhancing the model’s ability to dynam-
ically process both low- and high-frequency information.CA, channel attention; FC,
fully connected.

2.2 Decoupling Frequency Features

Generally, low-frequency features are associated with models’ generalization,
while high-frequency features contribute to improved performance [14, 1, 17]. In
the context of vBMD measurement, low- and high-frequency features provide
distinct yet complementary perspectives. Low-frequency features are essential
for identifying the bone density measurement area and the macroscopic verte-
bral anatomy, enabling the model to quickly locate the candidate observation
region. However, some low-frequency features are highly sensitive to tube volt-
age variations, which can compromise the model’s stability [7]. In contrast, high-
frequency features, which capture the trabecular structure of the bone, remain
more stable across varying tube voltages, thereby enhancing the model’s robust-
ness [12]. Traditional methods for decomposing low- and high-frequency features
often rely on computationally intensive techniques, such as wavelet transforms
or convolutions with multi-scale kernels [11, 10]. Although effective, these ap-
proaches can be resource-intensive, particularly when applied to 3D medical
imaging. To address this challenge while preserving effective feature decomposi-
tion, we propose a simple yet efficient alternative. Low-frequency components are
extracted through average pooling, which downscales the original feature map
[24, 4]. High-frequency components are then derived by calculating the residual
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between the original feature map and the low-frequency components after per-
forming nearest neighbor upsampling on the low-frequency features. This method
not only simplifies the decomposition process but also ensures that the low- and
high-frequency features remain complementary, thereby enhancing both compu-
tational efficiency and model performance.

2.3 Modulating Frequency Features

To modulate frequency features, existing research often applies the Fourier
transform repeatedly within each convolutional module [3], leading to increased
computational overhead. To address this limitation, we propose a frequency do-
main modulation module that integrates the Fourier transform with a spatial
attention mechanism in the shallow convolutional layers. These shallow lay-
ers, which are critical for capturing local features, are particularly sensitive to
high-frequency components [5]. By selectively enhancing high-frequency features,
we can improve model performance while avoiding the redundancy of repeated
frequency-dependent operations. This approach aligns with the practical require-
ments of vBMD measurement and leverages the distinct feature extraction char-
acteristics of different layers in DNNs, optimizing both computational efficiency
and model performance. Given an input feature map X ∈ RC,D,H,W , the process
is outlined by the following equations:

Y =
∑
b∈B

σ(f(Xb;Wb))⊙Xb

with Xb = F−1(Mb ⊙F(X))

(1)

Where F and F−1 are Fourier transform pairs, Mb ∈ MB is a binary fre-
quency mask, f(X;W ) denotes convolution with parameters W , and ⊙ repre-
sents Hadamard product.

2.4 Double-branch Convolution

The dual-branch convolution structure is a commonly used architecture in the
frequency domain [4]. However, traditional dual-branch structures often achieve
inter-domain feature interaction through additional convolutions, which can in-
troduce unnecessary parameters and potentially lead to undesirable mixing of
inter-domain information. To address this, we have designed a streamlined dual-
branch convolution structure based on an asymmetric channel attention mech-
anism, making the model more lightweight. Furthermore, we ensure that each
branch exclusively contains either low- or high-frequency features by effectively
coupling and decoupling complementary frequency-domain components.

The convolution process consists of four blocks, each featuring residual con-
nections, convolution layers, and channel attention. Residual connections are
crucial for preserving important features and mitigating the vanishing gradient
problem. A shallow network design is chosen to capture high-frequency features,
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as shallower networks are more effective in this context. In contrast, deeper
networks are better suited for capturing low-frequency features and increasing
the number of parameters [23, 17]. The low- and high-frequency components
X = {XL, XH} are processed as:

YL = f(XL;WL) +XL

YH = f(XH ;WH) +XH

(2)

Here, WL and WH represents convolution kernels corresponding to XL and
XH , respectively.

2.5 Feature Fusion and Re-splitting Utilizing Channel Attention

Many existing methods separate low- and high-frequency features, only fusing
them at the final stage [10, 5]. However, in vBMD measurement, high-frequency
features can benefit from integration with low-frequency features throughout
the network. We propose introducing an interaction mechanism between these
features at intermediate stages after each dual-branch module rather than only at
the final fusion stage. This enables iterative refinement, preserving and enhancing
their complementary nature.

The initial fusion of low- and high-frequency features is achieved through
summation, given their complementary nature. We then apply global average
pooling (GAP) and global max pooling (GMP) to distill channel-specific infor-
mation, generating attention weights that highlight the most informative fea-
tures from both domains. Using both GAP and GMP together enhances feature
extraction compared to using a single pooling operation [16, 21].

The channel attention maps A={AL, AH} are generated by applying a shared
MLP to the GAP and GMP results as follows:

X̃ = upsample(XL) +XH

AH = σ(MLP (GMP (X̃))

AL = σ(MLP (GAP (X̃))

(3)

Finally, we apply these attention weights to each feature map, enhancing the
relevant features in both frequency domains. The coupled feature map is then
decoupled into its low- and high-frequency components, preserving the distinct
contributions of each domain:

X̃ = AH ⊙XH +AL ⊙XL

YL = AP (X̃)

YH = X̃ − upsample(YL)

(4)

where AP (x) is average pooling with kernel size 2× 2× 2 and upsample(x)
indicates a nearest neighbor upsampling operation.

This approach ensures that both high- and low-frequency features are bal-
anced and effectively integrated throughout the network, improving the robust-
ness and accuracy of the vBMD measurement.
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3 Experimental Results and Discussion

3.1 Datasets and evaluation metrics

Data were sourced from two medical centers, each using independent scan-
ning equipment with standard or bone reconstruction kernels. One center’s data
(2,245 vertebral body images from 366 patients) served as the external testing
set, while the other center’s data was split into training, validation, and internal
testing sets (1,614 vertebral body images from 248 patients) at a 6:2:2 ratio.
All datasets included varying tube voltages and adopted similar reconstruction
kernels. In both the internal test set and external test set, the proportion of
patients with 120kVp, 100kVp, and 80kVp data is approximately 5:3:2 and 2:1:1,
respectively.

Phantom-based QCT measurements at 120 kVp served as the gold standard.
The conventional PL method utilizes linear regression at 120 kVp to convert
vertebral HU values and internal reference tissues into vBMD. However, since
HU values are highly dependent on tube voltage, directly applying this method in
our study was not feasible. To address this limitation, we adapted the traditional
PL method by incorporating a two-step approach inspired by Nakaura et al.
Specifically, non-120 kVp HU values were first transformed into the 120 kVp
HU space using a linear conversion formula [7]. This transformation was then
followed by linear regression to estimate vBMD. This adaptation enables effective
application of the PL method in multi-tube voltage scenarios. Additionally, we
compared our method with ResNet-10 and OctResNet-10 architectures [2, 4],
evaluating performance using mean absolute error (MAE), mean squared error
(MSE), and the coefficient of determination (R2).

3.2 Performance Comparisons of PL vBMD methods

Table 1: Comparison of Regression Performance Metrics.

kVp Method Internal Testing External Testing
MAE ↓ MSE ↓ R2 ↑ MAE ↓ MSE ↓ R2 ↑

Overall

Baseline 7.327 93.808 0.949 8.332 119.742 0.972
ResNet10 7.330 96.391 0.949 8.510 128.722 0.956

OctResNet10 6.286 70.683 0.962 7.695 106.182 0.957
Ours 5.990 64.082 0.966 7.175 97.128 0.963

120kVp

Baseline 6.834 83.241 0.954 7.148 87.486 0.975
ResNet10 6.941 87.604 0.955 7.426 103.649 0.969

OctResNet10 5.768 60.405 0.968 6.426 74.492 0.975
Ours 5.612 56.503 0.970 6.025 70.124 0.976

100kVp

Baseline 8.467 116.274 0.941 14.020 274.810 0.955
ResNet10 7.155 92.245 0.954 10.374 180.658 0.926

OctResNet10 6.787 80.917 0.960 8.021 116.037 0.938
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Ours 6.459 70.190 0.966 7.812 112.699 0.945

80kVp

Baseline 6.639 82.911 0.949 7.951 109.259 0.970
ResNet10 8.849 131.052 0.935 10.334 165.216 0.942

OctResNet10 6.904 82.335 0.958 11.040 188.614 0.942
Ours 6.240 75.430 0.960 9.982 162.702 0.937

We compared our method with the baseline PL vBMD, ResNet-10, and
OctResNet-10 models. As shown in Table 1, our method outperformed the others
across most metrics, especially at 120 kVp and 100 kVp. While it also surpassed
the DNNs at 80 kVp, the DNNs underperformed relative to the baseline on the
external 80 kVp dataset, likely due to significant image quality differences across
centers under the extremely low tube voltage.

3.3 Ablation experiment

Table 2: Ablation Experiment of Balancing Features and Channel
Attention in Frequency Domains.

Internal Testing External Testing
MAE ↓ MSE ↓ R2 ↑ MAE ↓ MSE ↓ R2 ↑

Balancing
Features

Channel
Attention

× × 6.616 78.980 0.957 8.053 115.373 0.959
✓ × 6.593 79.928 0.957 7.629 111.247 0.958
× ✓ 6.502 75.652 0.959 7.783 112.943 0.957
✓ ✓ 5.990 64.082 0.966 7.175 97.128 0.963
Channel Attention

(HF + LF) to (GMP + GAP) 6.637 75.897 0.959 7.800 110.783 0.956
HF to GAP + LF to GMP 6.985 85.647 0.953 8.018 118.075 0.957
HF to GMP + LF to GAP 5.990 64.082 0.966 7.175 97.128 0.963

HF, high-frequency; LF, low-frequency;

Ablation experiments demonstrated the synergistic effect of frequency bal-
ancing and channel attention. While feature balancing alone showed minimal im-
pact on internal testing, combining it with channel attention produced the best
results across all metrics. Furthermore, We evaluated three channel attention
configurations for feature integration. Applying GMP to high-frequency features
and GAP to low-frequency features yielded optimal results (Table 2), aligning
with previous findings which suggest GAP captures low-frequency features and
GMP is better suited for high-frequency ones [21, 13, 16].

4 Conclusion

We propose a lightweight frequency-domain network designed to address
vBMD measurement across multi-tube voltage CT scans, achieving an opti-
mal balance between precision and parameter efficiency. Precision is enhanced
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through the adaptive rebalancing of cross-bandwidth frequency components, an
asymmetric channel attention mechanism that allocates different weights based
on frequency characteristics, and a double-branch convolutional architecture that
preserves critical bone trabecular details while maintaining parameter efficiency.
Additionally, the network, structured with shallow layers, one-pass frequency
modulation, and double-branch convolution, ensures the retention of trabecular
details while keeping the model lightweight. Through rigorous experimentation,
we demonstrate that our method facilitates robust vBMD measurement across
varying tube voltages. Future work will focus on addressing performance degra-
dation due to image quality variations across different scanners.

5 Limitations

This study has several inherent limitations that should be addressed. First,
the research indirectly assesses bone microstructure through the parameter of
vBMD. While vBMD serves as a useful surrogate, it does not provide direct
measurements of other microstructural indices, such as trabecular spacing, which
require specialized scanning equipment and protocols not feasible for clinical
populations. Second, the baseline approach employed—linear regression—while
common, is susceptible to influences from various technical factors, including
equipment variations and tube voltage settings, which may introduce bias or
inaccuracies. Third, the scope of this study was limited to tube voltages in
the range of 80/100/120 kVp, which are standard in national chest screening
programs. This focus precluded an exploration of other voltage ranges, which
could provide further insights into the relationship between tube voltage and
vBMD measurements. Finally, the study was constrained by a relatively small
sample size, limiting the ability to conduct more detailed subgroup analyses that
could account for patient demographics and other potential confounding factors.

Despite these limitations, this study represents a pioneering effort in multi-
tube voltage BMD measurement. With larger sample sizes, this methodology has
significant potential for further optimization and prospective validation across
diverse populations and tube voltage datasets.

6 Disclosure of Interests
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