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Abstract. Colorectal polyp segmentation can assist doctors in screen-
ing colonoscopy images, which is crucial for the prevention of colorectal
cancer. Although deep learning has significantly advanced polyp seg-
mentation, three issues remain: (1) Most polyp segmentation methods
only extract Euclidean features such as shape and texture, while ne-
glecting non-Euclidean features, such as the geometric topology between
the polyp and its surrounding tissue; (2) Non-Euclidean features vary
across different regions, but most feature fusion methods overlook both
the non-Euclidean topological structures and the differences between in-
ternal, edge, and background regions. (3) Low-level features are not fully
exploited, and the differences between low- and high-level features are not
effectively addressed. To resolve these issues, we propose Hybrid Graph
Mamba (HGM) based on Mamba and Graph Convolutional Network
(GCN). Our model first uses the pyramid vision transformer to extract
features at different levels. Next, we propose hybrid graph Mamba mod-
ules to process low-level features from multiple directions using quad-
directional Mamba and extract non-Euclidean features with GCN. A
boundary discrimination fusion module is also designed to handle high-
level features, extracting semantic information for the interior, edges,
and background to improve the fusion of low- and high-level features.
Finally, a bidirectional Mamba decoder combines bidirectional Mamba
and dilated convolutions to aggregate multi-scale features, minimizing in-
formation loss and producing the final prediction. Extensive experiments
on five benchmark datasets demonstrate that HGM significantly outper-
forms eight State-Of-The-Art models. Our code is publicly available at
https://github.com/YueyueZhu/HGM.
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1 Introduction

Colorectal Cancer (CRC) is the third leading cause of cancer-related deaths
worldwide, with most cases developing from polyps. Early detection of polyps
through colonoscopy is crucial for preventing CRC. However, manual observation
is time-consuming, labor-intensive, and subjective, leading to missed detections.
Automated polyp segmentation techniques have improved accuracy, aiding doc-
tors in diagnosis and treatment planning. Despite this, accurate segmentation
remains challenging due to the varying shapes, sizes, and ambiguous boundaries
of the polyps with surrounding tissues.

Early automated polyp segmentation relied on handcrafted features, but
these were limited in expressiveness, leading to high false detection rates. Deep
learning can learn more comprehensive and accurate features. Recently, a large
number of deep learning-based methods have been applied to polyp segmenta-
tion [7,10]. PraNet [5] improves the accuracy of edge segmentation using reverse
attention to focus on the segmentation of background regions. Polyp-PVT [3]
extracts and processes both low- and high-level features and then fuses them
to obtain more comprehensive features. CAFE [9] supplements details through
the Feature Selection and Enhancement Module (FSEM) and retains lower-level
features with cross-attention, improving the accuracy of small polyp segmen-
tation. Polyper [12] enhances polyp segmentation using morphological opera-
tors and a boundary-sensitive attention module. VMUNetV2 [23] introduces
Visual State Space (VSS) blocks to capture more contextual information and
uses Semantic and Detail Injection (SDI) mechanisms to improve feature fu-
sion. G-CASCADE [11] employs a graph convolutional decoder and an attention
module to enhance feature map optimization and segmentation performance.
VANet [2] uses viewpoint classification to localize polyps and designs VAFormer
to reduce the interference of surrounding tissues with attention, thus obtain-
ing better polyp representations. HSNet [24] employs a Cross-Scale Attention
(CSA) to link encoder–decoder features and a dual-branch Hybrid Scale Con-
text (HSC) combining Transformers [15] and CNNs [8] for both global context
and local detail recovery. FusionMamba [21] proposes a Mamba-based fusion
framework that adaptively boosts intra- and inter-modal representations, bal-
ancing CNN efficiency with ViT global modeling to excel in multimodal fusion
tasks with lower complexity. EFA-Net [25] integrates an Edge-aware Guidance
Module (EGM), Scale-aware Convolution Module (SCM), and Cross-level Fu-
sion Module (CFM) for multi-scale, cross-level feature fusion, sharpening polyp
boundaries and improving segmentation across datasets.

While existing methods improve the accuracy of polyp segmentation, several
issues remain: (1) Colonoscopy images contain not only Euclidean features, such
as shape and texture, but also many non-Euclidean features, such as the geomet-
ric and topological structures formed by a polyp and its surrounding tissues. Ex-
isting methods primarily focus on extracting Euclidean features of polyps while
neglecting the rich non-Euclidean features. (2) Non-Euclidean features contain a
wealth of information and vary across different regions. When integrating high-
and low-level features, existing methods treat the entire feature set uniformly,
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without considering both the non-Euclidean topological structure and the dif-
ferences between internal, edge, and background regions. (3) There is a lack of
further exploration of low-level feature information, and existing methods fail to
effectively address the gap between low- and high-level features.

To this end, we propose a novel deep learning model, called Hybrid Graph
Mamba (HGM), which achieves accurate polyp segmentation with a mixture of
Mamba and Graph Convolutional Network (GCN). Specifically, we use a pyra-
mid vision transformer [19] to extract features at different levels. For low-level
features, we design the Hybrid Graph Mamba Module (HGMM), which focuses
on detailed features using Quad-directional Mamba (QM) and extracts non-
Euclidean features using GCN [22]. For high-level features, we use the Cascaded
Fusion Module (CFM) [3] to extract semantic and positional information of
polyps. The processed low- and high-level features are then fused in the Bound-
ary Discrimination Fusion Module (BDFM), ensuring that the final feature map
contains positional information while also focusing on edge details. Finally, the
outputs of CFM and BDFM are passed through a HGMM to further extract non-
Euclidean features and to prevent the loss of prior features. These outputs are
then input into the Bidirectional Mamba Decoder (BMD), which uses multi-size
receptive fields to extract various features and fuse multi-scale features, ulti-
mately obtaining the segmentation result. Experimental results show that our
model achieves superior segmentation results and outperforms State-Of-The-Art
methods on five benchmark datasets.

2 Method

2.1 Overall Architecture

As shown in Fig. 1, our model consists of five components. The pyramid vision
transformer is employed to extract features at multiple levels from the original
image. The CFM aggregates high-level features from X2, X3, and X4, which
provide global semantic information. Through the CFM, the intermediate fea-
ture T 1 is obtained. For the low-level feature X1, the HGMM transforms it
into a one-dimensional vector and extracts features from four directions using
Mamba. These features are then fused across different channels using GCN,
which helps extract non-Euclidean features. These non-Euclidean features cap-
ture rich boundary details, which assist in distinguishing the target from the
background. The BDFM is then applied to fuse the high-level features processed
by the CFM and the low-level features processed by HGMM, ultimately produc-
ing the output T 2. Mathematically, the whole procedure is defined as follows:

T 1 = CFM(X2,X3,X4), T 2 = BDFM(T 1,HGMM(X1)). (1)

To fuse the features and further extract non-Euclidean features, both the outputs
of BDFM and the outputs of CFM are passed through a HGMM. These processed
features are then fused with the original features that have been processed by
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Fig. 1. Overall architecture of HGM. Our model consists of a pyramid vision trans-
former, a CFM, three HGMMs, a BDFM, and a BMD.

dilated convolutions, in the BMD. This fusion process ultimately generates the
final segmentation mask Y :

Y = BMD(HGMM(T 1),HGMM(T 2),DilateConv(X1,X2)), (2)

where DilateConv(·) represents the dilated convolution component, as shown at
the top of Fig. 1.

2.2 Hybrid Graph Mamba Module

As shown in Fig. 2, in HGMM we construct the QM for feature extraction
using the BiMamba [18]. We use four BiMamba blocks, connected in pairs. The
input consists of X and its transpose X⊤. For a single BiMamba cascade, the
first block is called the pre-BiMamba, which has a single output. The second
block is called the post-BiMamba, which, in addition to the output of the pre-
BiMamba, produces two additional direction-specific immediate features, XF

and XB. Mathematically, this is defined as:

(XF,XM,XB) = BiMambapost(BiMambapre(X)), (3)

where XM represents the output feature of the post-BiMamba, and
BiMambapre(·) and BiMambapost(·) represent the pre- and post-BiMamba. Bi-
Mamba inputs the data from both the forward and backward directions into the
SSM and is defined as:

BiMamba(x) = RS(x+ x′SSMF(x
′′) + x′SSMB(x

′′)), (4)
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Fig. 2. Illustrations of two proposed modules.

where RS(·) denotes a reshape operation that transforms X into x, i.e., x =
RS(X). The SSMF(·) and SSMB(·) represent the forward and backward SSM,
respectively. x′ and x′′ are defined as x′ = SiLU(x) and x′′ = SiLU(Conv(x))
with SiLU(·) denoting SiLU activation function [4].

As shown in Fig. 2, the four intermediate features from BiMamba blocks,
denoted as XF, XB, X⊤

F , and X⊤
B , are then concatenated along the channels

and fed into the GCN [22]. This fuses the features from different channels and
extracts non-Euclidean features from the image. Finally, we add the extracted
features to the features XM and X⊤

M obtained from the QM to produce the final
output of the HGMM, as shown in the following formula:

HGMM(X) = GCN([XF,XB,X
⊤
F ,X

⊤
B ],A) +XM +X⊤

M +X, (5)

where [·] denotes the concatenation operation and A is the adjacency matrix.
To reduce computation, we set the value of specific positions in the adjacency
matrix to one, while the rest are set to zero. Specifically, every 32 units along
each axis is set to one, and the values along the axis of symmetry are also set to
one to further enhance the matrix’s structure.

2.3 Boundary Discrimination Fusion Module

The structure of BDFM is shown in Fig. 2. First, we generate an initial seg-
mentation map by applying a downsampling operation and a ReLU activation
function to the high-level features, which are the output of the CFM. This initial
segmentation map is subsequently processed to derive three distinct feature maps
corresponding to the internal, background, and boundary regions of the image.
The separate processing of different regions helps capture the unique properties
of each region in a more detailed manner. Next, to simplify the processing steps
and make the information more compact and easier to handle, we flatten these
three feature maps into one-dimensional vectors, forming the tensor U .

Next, to allow effective fusion with the features output by the HGMM. We
flatten each channel in each batch of the HGMM output features into a one-
dimensional vector, resulting in X ′. The subsequent operations involve a series
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Table 1. Quantitative comparison of HGM and other methods. The top of these results
are shown in red and the second best in blue.

Module CVC-300 ClinicDB Kvasir ColonDB ETIS All Datasets

Dice IoU Dice IoU Dice IoU Dice IoU Dice IoU Dice IoU

UMNet 0.816 0.726 0.885 0.820 0.841 0.763 0.673 0.590 0.554 0.456 0.754 0.671
VMUNetV2 0.857 0.780 0.897 0.841 0.895 0.834 0.737 0.655 0.727 0.632 0.822 0.748

G-CASCADE 0.883 0.807 0.881 0.820 0.913 0.858 0.764 0.680 0.720 0.628 0.832 0.759
CFATransUnet 0.900 0.829 0.907 0.850 0.906 0.847 0.791 0.706 0.727 0.641 0.846 0.775

VANet 0.889 0.819 0.915 0.860 0.920 0.868 0.796 0.715 0.792 0.712 0.862 0.794
HSNet 0.877 0.807 0.925 0.882 0.926 0.883 0.819 0.742 0.790 0.713 0.867 0.805

Polyp-PVT 0.903 0.837 0.937 0.889 0.919 0.869 0.811 0.730 0.790 0.709 0.872 0.806
CAFE 0.897 0.835 0.932 0.885 0.926 0.878 0.828 0.749 0.803 0.725 0.877 0.814
HGM 0.910 0.846 0.939 0.896 0.928 0.879 0.837 0.759 0.820 0.743 0.887 0.825

of convolutional steps, as shown in the following formulas:

XBDFM = Conv([RS(Conv(UX ′)(Conv(UX ′)Conv(X ′))),RS(X ′)]). (6)

2.4 Bidirectional Mamba Decoder and Loss Function

After passing the outputs of CFM and BDFM through HGMM, we fuse them
with the original features processed by the dilated convolution module and input
this fused feature map into the BMD for further decoding. We use two sets of
deconvolution layers and BiMamba blocks for fusion. Leveraging the excellent
feature extraction capabilities of the BiMamba block, the final fused features can
effectively represent the characteristics of each individual feature. This approach
ensures that while focusing on global information, it does not lose detailed fea-
tures. Finally, we obtain the final output through a deconvolution layer and a
fully connected layer.

Our model is trained with a mixture loss consisting of a weighted Binary
Cross-Entropy (wBCE) loss and a weighted Intersection-over-Union (wIoU) loss.

3 Experiments

3.1 Experimental Settings

Datasets. In this study, based on the experimental setup of PraNet, we selected
five challenging public datasets to validate the effectiveness of our framework.
The datasets include: CVC-300 [16] containing 60 images, ClinicDB [1] with 612
images, Kvasir [6] comprising 1000 images, ColonDB [14] consisting of 380 im-
ages, and ETIS [13] containing 196 images. These datasets, derived from diverse
sources, encompass various polyp morphologies and different colonic environ-
ments. This comprehensive collection enables thorough evaluation of our frame-
work’s performance in handling diverse complex scenarios, thereby establishing
a solid data foundation for verifying the framework’s effectiveness.
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Image GT HGM CAFE VMUNetV2 UMNetPolyp-PVT

Fig. 3. Visualized segmentation results. In the five datasets mentioned in the previous
experiment, three images are selected to compare the segmentation performance of our
model with that of other models.

Implementation Details. In this experiment, we build and train the model
using the PyTorch deep learning framework. During training, the hyperparam-
eters are set as follows: the initial learning rate is set to 1e-4, the batch size is
set to 16, and the input image resolution is set to 352 × 352. All experiments
are conducted on a computing platform equipped with two NVIDIA RTX 3090
GPUs. To evaluate the performance of the model in the polyp segmentation task
comprehensively and objectively, we use two widely applied evaluation metrics
in this field: the Dice coefficient and IoU.

3.2 Comparison with State-Of-The-Art Models

Quantitative Results. To further verify the performance of HGM, under the
same experimental environment and parameter settings, a performance com-
parison is conducted on five datasets with currently mainstream segmentation
models, namely UMNet [20], VMUNetV2 [23], G-CASCADE [11], CFATran-
sUnet [17], VANet [2], HSNet [24], Polyp-PVT [3], and CAFE [9]. The experimen-
tal results, shown in Table 1, indicate that HGM achieves the best or second-best
performance in terms of Dice and IoU across all five datasets, with particularly
significant advantages on ETIS (Dice: 0.820, IoU: 0.743). Furthermore, HGM
achieves the best performance (Dice: 0.887, IoU: 0.825) on all datasets, outper-
forming the cutting-edge model, CAFE (Dice: 0.877, IoU: 0.814). While other
methods like Polyp-PVT and CAFE excel in specific datasets (e.g., Polyp-PVT
achieves a Dice of 0.937 on ClinicDB), HGM demonstrates superior consistency
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Table 2. Ablation results of different modules. The top of these results are shown in
red and the second best in blue.

Model ClinicDB CVC-300 ETIS

Base BMD QM GCN BDFM Dice IoU Dice IoU Dice IoU

✓ 0.917 0.869 0.883 0.818 0.787 0.705
✓ ✓ 0.924 0.876 0.899 0.829 0.801 0.725
✓ ✓ ✓ 0.929 0.882 0.900 0.831 0.792 0.718
✓ ✓ ✓ ✓ 0.934 0.900 0.900 0.837 0.811 0.733
✓ ✓ ✓ ✓ ✓ 0.939 0.896 0.911 0.847 0.820 0.743

and generalization. The findings suggest that HGM effectively improves seg-
mentation accuracy, especially in complex scenarios (e.g., ETIS), validating its
overall superiority.
Qualitative Results. Fig. 3 shows a qualitative comparison of the HGM with
other segmentation models. Visually, HGM accurately segments polyps of vary-
ing sizes and achieves good segmentation results. Moreover, HGM demonstrates
outstanding performance in boundary detection. As shown in rows 2, 3, and 4,
our method effectively segments the edges of the polyps, reducing segmentation
errors. This is due to the ability of the approach to extract non-Euclidean fea-
tures and fuse multi-scale features, preserving positional, detail, and boundary
information while minimizing feature loss during processing.

3.3 Ablation Study

The results of the ablation experiments in Table 2 show that each component
makes an important contribution to the overall performance of the model. The
first row of the Table 2 represents the baseline model, which uses convolutional
layers to replace the corresponding modules. When the BMD is added, two met-
rics increase on the three datasets. Taking the CVC-300 dataset as an example,
the Dice coefficient is increased to 0.899, and the IoU is increased to 0.829. This
is attributed to the fact that this module can aggregate multi-scale features
and use receptive fields of different sizes, reducing the loss of original features.
When the QM component is added continuously, the performance of the model
is further improved. On the ClinicDB dataset, the Dice coefficient reaches 0.929,
and the IoU is 0.882. This is because its extraction of multi-directional features
enhances the ability to recognize lesions. When the GCN component is added,
the performance improvement of the model on each dataset is more prominent.
On the ETIS dataset, the Dice coefficient is increased to 0.811, and the IoU is
increased to 0.733, indicating that the extraction of non-Euclidean features by
the GCN component has a great impact on improving the segmentation effect.
Finally, when the BDFM is added, it improves the fusion effect between low-
level features and high-level features, retains more information, enhances the
robustness of polyp segmentation, and the model performance reaches the best.
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4 Conclusion

In this paper, we proposed HGM, a novel deep learning model for accurate
polyp segmentation, which employs a multi-level feature extraction and fusion
architecture. It combines a pyramid vision transformer for feature extraction at
different levels, the HGMM for low-level features, and the CFM for high-level fea-
tures. The low- and high-level features are then fused using the BDFM. Finally,
the BMD extracts and fuses multi-scale features using different-sized receptive
fields, reducing feature loss to ensure more comprehensive feature information.
Our model outperforms State-Of-The-Art methods on five benchmark datasets,
achieving superior segmentation results.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

References

1. Bernal, J., Sánchez, F.J., Fernández-Esparrach, G., Gil, D., Rodríguez, C., Vi-
lariño, F.: WM-DOVA maps for accurate polyp highlighting in colonoscopy: Val-
idation vs. saliency maps from physicians. Computerized Medical Imaging and
Graphics 43, 99–111 (2015)

2. Cai, L., Chen, L., Huang, J., Wang, Y., Zhang, Y.: Know your orientation: A
viewpoint-aware framework for polyp segmentation. Medical Image Analysis 97,
103288 (2024)

3. Dong, B., Wang, W., Fan, D.P., Li, J., Fu, H., Shao, L.: Polyp-PVT: Polyp Segmen-
tation with Pyramid Vision Transformers. CAAI Artificial Intelligence Research 2,
9150015 (2023)

4. Elfwing, S., Uchibe, E., Doya, K.: Sigmoid-weighted linear units for neural net-
work function approximation in reinforcement learning. Neural Networks 107, 3–11
(2018)

5. Fan, D.P., Ji, G.P., Zhou, T., Chen, G., Fu, H., Shen, J., Shao, L.: PraNet: Parallel
reverse attention network for polyp segmentation. In: International Conference
on Medical Image Computing and Computer-Assisted Intervention. pp. 263–273.
Springer (2020)

6. Jha, D., Smedsrud, P.H., Riegler, M.A., Halvorsen, P., De Lange, T., Johansen, D.,
Johansen, H.D.: Kvasir-seg: A segmented polyp dataset. In: MultiMedia Modeling:
26th International Conference, MMM 2020, Daejeon, South Korea, January 5–8,
2020, proceedings, part II 26. pp. 451–462. Springer (2020)

7. Ji, G.P., Xiao, G., Chou, Y.C., Fan, D.P., Zhao, K., Chen, G., Van Gool, L.: Video
polyp segmentation: A deep learning perspective. Machine Intelligence Research
19(6), 531–549 (2022)

8. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998)

9. Liu, G., Yao, S., Liu, D., Chang, B., Chen, Z., Wang, J., Wei, J.: CAFE-Net:
Cross-attention and feature exploration network for polyp segmentation. Expert
Systems with Applications 238, 121754 (2024)

10. Mei, J., Zhou, T., Huang, K., Zhang, Y., Zhou, Y., Wu, Y., Fu, H.: A survey on
deep learning for polyp segmentation: Techniques, Challenges and Future Trends.
Visual Intelligence 3(1), 1 (2025)



10 Yueyue Zhu et al.

11. Rahman, M.M., Marculescu, R.: G-CASCADE: Efficient cascaded graph con-
volutional decoding for 2d medical image segmentation. In: Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer Vision. pp. 7728–
7737 (2024)

12. Shao, H., Zhang, Y., Hou, Q.: Polyper: Boundary Sensitive Polyp Segmentation.
In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 38, pp.
4731–4739 (2024)

13. Silva, J., Histace, A., Romain, O., Dray, X., Granado, B.: Toward embedded detec-
tion of polyps in wce images for early diagnosis of colorectal cancer. International
Journal of Computer Assisted Radiology and Surgery 9, 283–293 (2014)

14. Tajbakhsh, N., Gurudu, S.R., Liang, J.: Automated polyp detection in colonoscopy
videos using shape and context information. IEEE Transactions on Medical maging
35(2), 630–644 (2015)

15. Vaswani, A.: Attention is all you need. Advances in Neural Information Processing
Systems (2017)

16. Vázquez, D., Bernal, J., Sánchez, F.J., Fernández-Esparrach, G., López, A.M.,
Romero, A., Drozdzal, M., Courville, A.: A benchmark for endoluminal scene
segmentation of colonoscopy images. Journal of Healthcare Engineering 2017(1),
4037190 (2017)

17. Wang, C., Wang, L., Wang, N., Wei, X., Feng, T., Wu, M., Yao, Q., Zhang, R.:
CFATransUnet: Channel-wise cross fusion attention and transformer for 2d medical
image segmentation. Computers in Biology and Medicine p. 107803 (2024)

18. Wang, J., Chen, J., Chen, D., Wu, J.: LKM-UNet: Large kernel vision mamba unet
for medical image segmentation. In: International Conference on Medical Image
Computing and Computer-Assisted Intervention. pp. 360–370. Springer (2024)

19. Wang, W., Xie, E., Li, X., Fan, D.P., Song, K., Liang, D., Lu, T., Luo, P., Shao,
L.: Pyramid vision transformer: A versatile backbone for dense prediction with-
out convolutions. In: Proceedings of the IEEE/CVF International Conference on
Computer Vision. pp. 568–578 (2021)

20. Wang, Y., Zhang, W., Wang, L., Liu, T., Lu, H.: Multi-Source Uncertainty Mining
for Deep Unsupervised Saliency Detection. In: Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR). pp. 11727–11736
(2022)

21. Xie, X., Cui, Y., Tan, T., Zheng, X., Yu, Z.: FusionMamba: Dynamic feature en-
hancement for multimodal image fusion with mamba. Visual Intelligence 2(1), 37
(2024)

22. Yao, L., Mao, C., Luo, Y.: Graph convolutional networks for text classification.
In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 33, pp.
7370–7377 (2019)

23. Zhang, M., Yu, Y., Jin, S., Gu, L., Ling, T., Tao, X.: VM-UNET-V2: rethinking
vision mamba unet for medical image segmentation. In: International Symposium
on Bioinformatics Research and Applications. pp. 335–346. Springer (2024)

24. Zhang, W., Fu, C., Zheng, Y., Zhang, F., Zhao, Y., Sham, C.W.: HSNet: A hybrid
semantic network for polyp segmentation. Computers in Biology and Medicine
150, 106173 (2022)

25. Zhou, T., Zhang, Y., Chen, G., Zhou, Y., Wu, Y., Fan, D.P.: Edge-aware feature
aggregation network for polyp segmentation. Machine Intelligence Research 22(1),
101–116 (2025)


	Hybrid Graph Mamba: Unlocking Non-Euclidean Potential for Accurate Polyp Segmentation

