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Abstract. Monitoring progression from Mild Cognitive Impairment due
to Alzheimer’s Disease (MCI-AD) is critical for patient care. However,
current approaches to model AD progression overlook complex interre-
lated neurodegeneration in different regions of the brain and how AD
pathology and genotypes manipulate it. This study defines neurodegen-
eration dynamics and proposes the Dynamics Individualized by Static
Covariates without LOngitudinal ScrEening (DISCLOSE) framework.
This method predicts individualized neurodegeneration dynamics from
only baseline amyloid-beta deposition and the number of APOE4 alleles
with an Ordinal Differential Equation (ODE). We evaluated DISCLOSE
using longitudinal MRI samples in the Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI) cohort. The results demonstrate that DISCLOSE
outperforms existing methods in long-term trajectory prediction, par-
ticularly for predictions beyond three years. This work presents a sig-
nificant step toward modeling individualized disease trajectories. Also,
DISCLOSE could quantitatively interpret the effects of AD-related geno-
types and pathophysiology on regional atrophy progression.
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1 Introduction

Alzheimer’s disease (AD), the most prevalent form of dementia, is now under-
stood as a continuum that spans a preclinical stage of AD with underlying patho-
physiological developments to stages of severe cognitive decline [2]. Mild cogni-
tive impairment (MCI) due to AD (MCI-AD), representing an early stage in the
continuum, is characterized by cognitive deficits that do not significantly affect
daily life [10]. Approximately 30% to 50% of individuals with MCI-AD progress
to Alzheimer’s dementia within a decade [16], which emphasizes the importance
of identifying MCI patients who are more likely to be exacerbated.
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Amyloid beta (Aβ) protein accumulation in the brain is a key pathological
hallmark of AD, forming insoluble plaques that disrupt neuronal function [10].
Amyloid PET imaging is the gold standard measurement of Aβ proteinopathy,
which is typically expressed as standardized uptake value ratios (SUVRs) nor-
malized to a reference region [11]. In addition, the Apolipoprotein E (APOE)
genetic variant significantly increases an individual’s risk of developing AD. In
particular, the E4 homozygote is associated with earlier and more aggressive
amyloid deposition than other alleles. Measurement of neurodegeneration re-
sulting from AD pathology can be observed as brain atrophy on MRI scans.
Starting from the medial temporal lobe and hippocampus, atrophy progresses
to the cerebral cortex throughout the disease progression [4]. However, early di-
agnosis of AD solely based on the neurodegeneration biomarker is nonspecific
[10]. Thus, to holistically diagnose and stage AD, the combination of amyloid
PET measurement, APOE4 genotyping, and brain MRI analysis is essential.

Numerous studies have addressed the problem by predicting disease pro-
gression in MCI patients to dementia using machine learning. Several meth-
ods accompany brain MRI and amyloid or genotype information, and achieved
high prediction performance (e.g., AUROC ≥ 0.85) [9]. However, how biological
changes lead to local or global neurodegeneration has not been precisely mod-
eled. Also, how the atrophies of multiple brain regions are intercorrelated during
the AD continuum is usually overlooked.
Contributions. The AD continuum can be viewed as a dynamical system of
neurodegeneration across multiple brain regions influenced by Aβ deposition
and APOE4 alleles. We define it as the neurodegeneration dynamics. To model
the dynamics, we propose Dynamics Individualized by Static Covariates with-
out LOngitudinal ScrEening (DISCLOSE) framework. 1) DISCLOSE generates
an individualized Ordinary Differential Equation (ODE) from baseline informa-
tion only, 2) DISCLOSE outperforms other ODE discovery in neurodegener-
ation trajectory estimation. 3) DISCLOSE could enhance the interpretability
of neurodegeneration progressing during the AD continuum by identifying how
AD-related genotypes and pathology influence region-specific neurodegeneration
patterns beyond mere accuracy-focused conversion prediction. These insights of-
fer practical values for clinical applications and understanding whole-brain level
neurodegeneration during Alzheimer’s continuum, which is important particu-
larly in the era of recently approved anti-amyloid therapies [21,26].

1.1 Related Work

MCI to Dementia Conversion Prediction. Previous studies employ ma-
chine learning and deep learning methods to classify progressive MCI (pMCI)
and static MCI (sMCI) subjects. These approaches typically compute gray and
white matter volumes as well as cortical thickness from MRI scans, using these
features as input for SVMs or extracting structural features directly from MRIs
using a CNN-based encoder [9,28]. In addition to imaging-based methods, stud-
ies like [5] integrate non-imaging biomarkers, such as cerebrospinal fluid tests
measuring amyloid burden, to enhance the classification performance. Moreover,
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many studies highlight that the low baseline hippocampal volume and faster at-
rophy rate serve as key biomarkers for estimating the conversion [25].
Atrophy Quantification. Automated atlas-based voxel-based morphometry
(VBM) software like FreeSurfer is widely used to quantify brain MRI in longitu-
dinal analysis [8]. To improve computational efficiency and the generalizability
of atlas-based methods, deep learning-based VBMs have been introduced in re-
cent studies [23]. Some were commercialized and received regulatory approvals,
available in clinical practice beyond research settings [12].
Individualized ODE Discovery. Individual subjects may exhibit distinct neu-
rodegeneration patterns influenced by subject-specific covariates. This motivates
the development of personalized dynamical models that can adapt to individual
trajectories while preserving their relationship to population-level dynamics.

INSITE [14] framework discovers individualized ODEs in treatment effect
monitoring. INSITE employs a two-stage process: 1) using the SINDy algorithm
[5] to learn the population-wise ODE F̄ from aggregate data, then 2) personal-
izing this base model through fine-tuning with individual trajectories and static
covariates. This method demonstrates how population dynamics serve as a foun-
dation for capturing patient-specific variations through sparse equation discov-
ery. However, implementing such frameworks in clinical settings is limited. While
population dynamics can be pre-computed and integrated into clinical software,
the longitudinal data required to personalize the population dynamics is unavail-
able at a patient’s initial visit, making immediate intervention infeasible.

2 Method

Let x(i)
t ∈ D ⊆ RdD and v(i) ∈ V ⊆ RdV be features and static covariates of

a subject i ∈ I = {1, ..., N} measured at time t ∈ [0 : T ], and f (i) denote an
individualized dynamic of the subject i. Similar to INSITE [14], DISCLOSE
initially predicts the population dynamics f̄ , which demonstrates the trajectory
of x across all subjects. Afterward, DISCLOSE finds an optimal mapping A that
maps v(i) to an endomorphism f (i):

A : V → F , F = End(RdD ). (1)

Hence, f (i) = A(v(i)). To ensure the existence and uniqueness of the dynam-
ics, f (i) should be continuous in t and Lipschitz continuous in D, according to
Picard’s existence theorem [17]. For simplicity, we may let f be a linear function.

The key component of DISCLOSE is its unique loss function to optimize A:

L(x̂(i),x(i), f (i), f̄) = ∥x̂(i) − x(i)∥1 + λ1∥f (i) − f̄∥1 + λ2∥f (i)∥1, (2)

where x̂ and x are the predicted (from f (i)) and ground truth trajectories, re-
spectively. The first term is the main reconstruction loss with ℓ1-norm. The
second term accounts for the dynamics difference, which prevents the predicted
dynamics from deviating sharply from the population dynamics [14]. Also, the
third term is LASSO regularization to make f (i) sparse. The overview of the
DISCLOSE process is illustrated in Algorithm 1.
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Algorithm 1 Dynamics Individualized by Static Covariates without Longitu-
dinal Screening (DISCLOSE)

Input: Patient data D; patient static covariates V; deterministic ODE discovery
method DE; DISCLOSE function A.
Output: Population dynamics f̄ ; individualized dynamics {f (i)}i∈I

Start: f̄ ←− DE(D).
for i = 1 in D do

f (i) = A(v(i))
Calculate DISCLOSE loss (Equation 2)
backpropagate the loss to fit A

end for
repeat by n_epochs

3 Modeling Neurodegeneration Dynamics

Assume that an ODE governs brain atrophy progression in the AD continuum:

dx(i)

dt
= f(x(i)), f(·) ∈ F(R), (3)

where x(i) ∈ RdD represents the neurodegeneration of the i-th subject across
dD brain regions. While it can be defined as raw regional volume, a z-score or
normative percentile, obtained by comparison with an age and sex-matched nor-
mal population, is generally preferred [18]. F(R) could be a real-valued function
space, but for simplicity, let f be a linear transformation (i.e., a real-valued
matrix). Then, fj,k encodes the coupling between region j and region k [13].

Covariates such as gender, genetic information, and structural connectivity
could affect the neurodegenerative process. We assumed that the number of
APOE4 alleles (ϵ) and amyloid burden (β) are significant factors in brain atrophy
dynamics. Hence the equation (3) is modified as,

dx(i)

dt
= f

(i)

ϵ(i),β(i)(x(i)), f (i) ∈ MdD (R), (4)

where ϵ(i) and β(i) refer to the APOE4 and amyloid burden values of i-th subject.

3.1 Study Dataset

The study utilized 2,292 3T 3D T1-weighted volumetric brain MRI scans of 371
individuals with mild cognitive impairment (MCI) from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). All sampled
subjects were followed up for at least three years. Following [3], subjects were
labeled as pMCI (n = 63, Clinical Dementia Rating (CDR) global score increased
from 0.5 to 1 within 3 yrs) or sMCI (n = 308, CDR remained 0.5).

Each subject comes with the number of APOE4 alleles and amyloid SUVR.
The number of APOE4 alleles are encoded to ϵ ∈ E = {0, 1, 2} (ϵ = 0: APOE4

adni.loni.usc.edu
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Fig. 1: Atrophy Quantification Pipeline. Left: whole brain segmentation to ob-
tain volumes of 62 cortical and subcortical regions. Right: Calculate normative
percentiles to rank the subject’s regional bilateral hippocampal volumes against
the cognitively normal population.

non-carrier, ϵ = 1: APOE4 heterozygote, ϵ = 2: APOE4 homozygote). We used
the baseline global 18F-AV45 amyloid PET standardized uptake value ratio
(SUVR) to encode amyloid burden β [11], which is typically within the range
[0, 2]. The optimal cut-off for amyloid burden prediction is 1.11 [15].

3.2 Atrophy Quantification

Initially, we registered follow-up MRI scans to their corresponding baseline scans.
Intracranial volume (ICV) and whole brain segmentation algorithms from VUNO
Med-DeepBrain (DeepBrain) were employed to obtain volumes of 62 cortical
and subcortical regions. DeepBrain has achieved dice score coefficient 0.82 in
whole brain segmentation and 0.99 in ICV segmentation across multiple datasets
[23,24]. It also showed high agreement with FreeSurfer [22]. To minimize volume
changes due to head size differences, residual ICV adjustment was performed
[27]. By comparing the volumes to an age- and sex-matched cognitively normal
population, we derived the normative percentile (NP) values, representing the
cumulative density of Gaussian random variables with a mean and variance
estimated from the normative data (Figure 1). So, NP values are in the interval
[0, 1]. Lower NP values indicate smaller volumes than the normal population,
and therefore greater atrophy.

ADNI data have heterogeneous MRI acquisition time points. For instance,
some have follow-ups after 3 or 6 months since baseline, while a few cases were
tracked even after a decade. To cope with the data imputation issue, we fitted NP
values of the j-th region to an exponential curve xj = aje

−bjt (0 < a < 1, b > 0),
considering that they are strictly positive and will decrease. We sampled the data
from t = 0 to t = 5 with the step size 0.25 to form our train and test data.

3.3 DISCLOSE for Modeling Neurodegeneration Dynamics

Given D = [0, 1]62, and v = (ϵ, β), i.e., a tuple of the number of APOE4 alleles
and amyloid SUVR, we introduced an MLP to implement A that estimates f
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from ϵ and β. A consists of two hidden layers containing 128 and 256 neurons
with a dropout rate of 0.1, followed by LeakyReLU activation with a = 0.1 and
batch normalization. The final layer returns a vector of dimension 3844 = 622,
then reshaped to a square matrix f . For the population dynamics f̄ , we used
SINDy [5]. The dynamics tend to diverge if f is unbounded. Hence, we applied
the tanh(·) to f at the end and divided it by 62, effectively making it stable.

4 Experimental Results

All models were trained and validated on one NVIDIA Tesla V100 GPU with
CUDA 12.0. We used the ADAM optimizer (β1 = 0.9, β2 = 0.999, λ = 1e −
4, eps = 1e − 5). Considering the small values of predicted trajectories and
therefore small gradients, the initial learning rate was set to 0.01, but we applied
the ReducedOnPlateau learning rate scheduler (decay rate = 0.75, patience =
10). The batch size was set to 8, and we trained the model for 500 epochs, while
the training stopped if the validation loss did not decrease for 50 epochs.

4.1 Comparison with Other ODE Discovery Methods

We evaluated the neurodegeneration trajectory estimation of DISCLOSE with
ablation on loss terms in Equation (2). λ1 = 0.1 and λ2 = 0.01 uniformly, since
we found the prediction accuracy does not substantially depend on choices of λ1

and λ2. Following [14], we assessed the root mean squared error (RMSE) between
trajectories at each time point. We grouped time points before year one (τ < 1),
τ = 1, 2, 3, and τ > 3. We additionally measured matrix sparsity with threshold
(SPγ), the proportion of elements that are less than γ in absolute value relative
to the total number of elements, and the mean absolute error (MAE) between
predicted matrix and SINDy was scaled by 103.

We added two more baselines: 1) pure SINDy method without covariates (ϵ
and β) (SINDy), and 2) the dynamics with diagonal A (diagonal). Hence, its
ODE has the form ẋj = gj(ϵ, β)xj , where g : R2 −→ R62 is a linear function.
Results for INSITE were omitted since applying SINDy twice (globally then
individually) yielded unstable parameters in our task.

In Table 1, DISCLOSE methods outperformed SINDy, mainly when pre-
dicting the long-term after atrophy progression. SINDy showed almost no error
(RMSE = 0.016) in predicting the atrophy within a year (τ < 1), but the error
consistently grows to 0.115 after three years and onward. This tendency was the
same in the diagonal method, but the diagonal method exhibited inferior per-
formance compared to SINDy. Both baseline covariates and interaction between
brain regions seem necessary to accurately predict the dynamics.

On the other hand, DISCLOSE with different loss ablations showed simi-
lar RMSEs across the time points, while mostly achieving better RMSE than
baseline methods. However, adding regularization to Equation (2) was not re-
markably effective. The DISCLOSE loss only with the L1 trajectory distance
term showed the best goodness-of-fit with ground truth trajectories at τ = 1,
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Table 1: Neurodegeneration prediction results. RMSEs between predicted and
ground truth NP values of each time point are visualized. L1: L1 distance be-
tween trajectories, diff: dynamics difference, Lasso: Lasso regularization, SPγ :
sparsity with threshold γ, MAE: MAE between f and the SINDy matrix.

L1 L1 + diff L1 + diff + Lasso SINDy [5] diagonal
τ < 1 0.016± 0.009 0.016± 0.009 0.018± 0.010 0.016± 0.008 0.018± 0.008
τ = 1 0.039± 0.021 0.040± 0.022 0.045± 0.024 0.052± 0.024 0.057± 0.023
τ = 2 0.067± 0.031 0.068± 0.033 0.078± 0.037 0.08± 0.03 0.087± 0.029
τ = 3 0.089± 0.036 0.090± 0.039 0.104± 0.046 0.094± 0.031 0.102± 0.031
τ > 3 0.108± 0.040 0.108± 0.043 0.127± 0.053 0.115± 0.033 0.125± 0.035

SPγ 0.006± 0.002 0.006± 0.002 0.04± 0.049 0.668 N/A
MAE 5.232± 0.122 5.229± 0.143 5.145± 0.167 N/A N/A

τ = 1, and τ > 3. Adding dynamics difference regularization showed the highest
performance at τ = 2 and τ = 3. This consistency across different time points
suggests that the DISCLOSE framework is more robust to temporal variations
in neurodegeneration patterns than baseline approaches, potentially making it
more reliable for clinical applications where prediction stability is crucial. Still,
the differences between RMSEs were small. MAE slightly decreased, and these
methods failed to generate sparse dynamics. The Lasso regularization term did
not improve the trajectory estimation accuracy, but the sparsity marginally rose
to 0.04, yet substantially less than that of SINDy (i.e., 0.668).

4.2 Interpretable Dementia Conversion Prediction

Using f (i)s obtained from Equation (4), we examined regional correlations across
different APOE4 genotypes ϵ and amyloid burden SUVRs β. Table 2 and Figure
2 present the averaged prediction f of n subjects for each category of ϵ and β.

Interestingly, dynamical patterns substantially aligned with previous neu-
roimaging studies on AD patients. A clear trend emerges when comparing con-
nectivity within the same APOE4 group. Individuals with elevated amyloid
(β > 1.11) exhibit stronger coupling than their lower amyloid (β ≤ 1.11) coun-
terparts across all APOE4 groups. Similarly, the coupling tends to increase as the
number of APOE4 alleles rises (i.e., ϵ = 0, 1, 2), reinforcing the known genetic
influence of APOE4 on Alzheimer’s disease (AD) pathology [1]. Additionally, the
entorhinal cortex and amygdala remain consistently connected across all condi-
tions, with coupling localized to regions within the medial temporal lobe (dark
gray in Table 2) [7]. These observations align with established neurodegener-
ative patterns in AD, as the medial temporal lobe is known to show atrophy
associated with disease progression in the early stages [4]. In the highest-risk
group (top right in Table 2), temporal lobe atrophy diffuses from medial to lat-
eral regions such as the fusiform and middle temporal gyri, similar to typical
neurodegeneration progression in AD [10].
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Table 2: Top 5 connectomes of the averaged predicted fs w.r.t. amyloid burden
β and the number of APOE4 alleles ϵ. w is the edge weights scaled by 10−3.

Amyloid
APOE4 non-carrier (ϵ = 0) APOE4 heterozygote (ϵ = 1) APOE4 homozygote (ϵ = 2)

(β) w ROI ROI w ROI ROI w ROI ROI

High
(β > 1.11)

3.89 L-entorhinal L-amygdala 4.37 L-entorhinal L-amygdala 5.01 R-fusiform L-mid_temp
3.41 L-inf_temp R-sup_front 3.94 L-thalamus L-sup_front 4.95 L-entorhinal L-amygdala
3.34 L-inf_temp L-sup_front 3.92 L-inf_temp R-sup_front 4.80 L-thalamus L-sup_front
3.21 L-thalamus L-sup_front 3.85 R-fusiform L-min_temp 4.60 R-insula R-amygdala
3.18 R-precuneus R-sup_temp 3.84 L-inf_temp L-sup_front 4.51 L-inf_temp R-sup_front

Low
(β ≤ 1.11)

3.09 L-entorhinal L-amygdala 3.10 L-entorhinal L-amygdala 3.22 L-entorhinal L-amygdala
2.79 R-inf_pari L-fusiform 2.82 R-inf_pari L-fusiform 2.91 L-insula L-amygdala
2.67 R-precuneus R-sup_temp 2.81 R-med_occ R-amygdala 2.89 R-med_occ R-amygdala
2.66 R-med_occ R-amygdala 2.69 L-insula L-amygdala 2.88 R-inf_pari L-fusiform
2.64 L-inf_pari R-para_hip 2.62 L-inf_temp L-sup_front 2.76 L-inf_temp L-sup_front

(a) (b) (c) (d) (e) (f)

Fig. 2: The averaged predicted f across n subjects in each group: (ϵ =
0, high β, n = 66), (ϵ = 1, high β, n = 101), (ϵ = 2,high β, n = 28), (ϵ = 0, low β, n =
133), (ϵ = 1, low β, n = 36), and (ϵ = 2, low β, n = 6), corresponding to (a)-(f), respec-
tively. Colors and thickness of the edges represent the edge weights.

Low amyloid (β ≤ 1.11) groups exhibit notable influence from the parietal
and occipital regions, unlike the high amyloid groups (light gray in Table. 2).
Those atypical AD cases often exhibit pronounced posterior atrophy, particularly
in the medial parietal regions, advocating our findings [20].

5 Conclusion

We proposed the neurodegeneration dynamics showing the relationship among
brain regions, which can estimate the onset of severe neurodegeneration. To pre-
dict the dynamics, we introduced DISCLOSE, a framework that derives subject-
specific dynamics of neurodegeneration using only baseline data and thereby
aids longitudinal monitoring and simulation. Integrating APOE4 genotype and
initial amyloid burden data, DISCLOSE significantly improved atrophy estima-
tion while capturing the complex interactions between amyloid burden, APOE4
status, and progressive brain atrophy. We validated neurodegeneration dynam-
ics both quantitatively and qualitatively. By understanding individual disease
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progression patterns, this approach may fundamentally transform how we con-
ceptualize, monitor, and ultimately treat neurodegenerative diseases.
Limitation. DISCLOSE comes with limitations. It lacks sparsity and is not
suitable for handling data variability. As a future work, adding explicit regular-
ization for sparsity can be considered, as well as stochastic differential equations
to effectively capture data variability. While we used MLPs for the dynamics
matrix, sparse graph neural networks could potentially enhance spatial relation-
ship modeling [6,19]. Finally, our validation was limited to a single cohort, which
can be extended in a longer version of our work.
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