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Abstract. With the rapid development of computational pathology,
many AI-assisted diagnostic tasks have emerged. Cellular nuclei segmen-
tation can segment various types of cells for downstream analysis, but it
relies on predefined categories and lacks flexibility. Moreover, pathology
visual question answering can perform image-level understanding but
lacks region-level detection capability. To address this, we propose a new
benchmark called Pathology Visual Grounding (PathVG), which aims
to detect regions based on expressions with different attributes. To eval-
uate PathVG, we create a new dataset named RefPath which contains
27,610 images with 33,500 language-grounded boxes. Compared to visual
grounding in other domains, PathVG presents pathological images at
multi-scale and contains expressions with pathological knowledge. In the
experimental study, we found that the biggest challenge was the implicit
information underlying the pathological expressions. Based on this, we
proposed Pathology Knowledge-enhanced Network (PKNet) as the base-
line model for PathVG. PKNet leverages the knowledge-enhancement
capabilities of Large Language Models (LLMs) to convert pathological
terms with implicit information into explicit visual features, and fuses
knowledge features with expression features through the designed Knowl-
edge Fusion Module (KFM). The proposed method achieves state-of-the-
art performance on the PathVG benchmark. The source code and dataset
have been available at https://github.com/ssecv/PathVG.

Keywords: Pathology Visual Grounding · Vision-Language Model ·
Large Language Model.

1 Introduction

Pathology is the cornerstone of modern medicine, playing a crucial role in dis-
ease diagnosis and understanding. With the development of artificial intelligence,
computational pathology has made significant strides, such as whole-slide can-
cer subtyping and survival prediction [7, 9, 11], cellular nuclei segmentation [16],

⋆ Equal contribution B Corresponding author



2 Chunlin Zhong et al.

(a) Cellular nuclei 
segmentation

(c) Pathology Visual Grounding(b) Pathology Visual Question Answer

Question: What 
type of pathology 
might the cell 
structures in the 
image be 
associated with?

Answer: The cell structures 
in the image show abnormal 
proliferation, which may be 
associated with malignant 
tumors or lymphomas.

In the alveolar 
space with an 
isolated rounded 
cell cluster.

Expression_1

Lower left corner，
a cluster densely 
arranged red blood 
cells.

Expression_2

Fig. 1: A comparison of (a) Cellular nuclei segmentation, (b) Pathology Visual
Question Answer and (c) our proposed PathVG benchmark.

and pathology visual question answering [13, 5]. However, current computational
pathology tasks still face certain limitations. Cancer subtype and survival pre-
diction are based on overall predictions from whole slide images, and patch-level
analysis cannot be performed. Cellular nuclei segmentation (Fig. 1(a)) can seg-
ment various types of cells for downstream analysis, but it relies on predefined
categories and lacks flexibility. Moreover, pathology visual question answering
(Fig. 1(b)) focuses on image-level understanding and cannot perform region-level
detection. In clinical practice, however, it is often necessary to detect different
regions based on factors such as different organs and cancer types or in response
to referring human input. To address these challenges, we propose a novel bench-
mark, PathVG, which provides flexible and region-level detection capabilities. In
contrast, PathVG(Fig. 1(c)) allows for the localization of different regions by
inputting various expressions.

In recent years, Medical Visual Grounding (MVG) has already been ex-
plored [1, 2, 10, 6]. As shown in Fig.2 (a) and (b), due to the uniqueness of
pathological data, PathVG presents two key distinctions compared to the pre-
vious MVG: (1) Multi-scale pathological images: A uniqueness of patho-
logical images is that the same region exhibits different pathological features at
varying magnification levels. Higher magnification images highlight cell struc-
ture and growth, while lower-magnification images reveal cell arrangement and
interaction with neighboring cells. (2) Expressions with pathological knowl-
edge: PathVG localizes specific regions from multiple pathological perspectives,
such as cell structure, growth patterns, cell arrangement, and interactions with
neighboring cells, to accurately localize regions under different magnification. To
align with these two distinctions, we introduce a novel dataset called RefPath,
specifically tailored for PathVG. PathVG includes 27,610 images with 33,500
language-grounded boxes.

Compared to visual grounding in other domains, the main challenge of PathVG
lies in the implicit information underlying the pathological expressions, which
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(a) Medical Visual Grounding

Expression: Tiny left 
apical pneumothorax

(b)Pathology Visual Grounding

Expression:  Tissue 
heterogeneity with 
loosely arranged cells 
and localized cell 
infiltration.

Expression: Cell 
clusters display 
enlarged, irregular 
nuclei, with abundant 
surrounding cytoplasm.

20    Magnification 40 Magnification

Fig. 2: (a) Previous Medical Visual Grounding. (b) Pathology Visual Ground-
ing: Identical region at Lower (Left) and Higher (Right) Magnification, with
expressions for cell arrangement and interactions with neighboring cells (Red),
as well as cell structure and growth (Green).

makes it difficult to associate them with pathological images. The expressions in
RefPath describe pathological region from multiple perspectives, requiring the
model to understand a wide range of specialized terms. This becomes a chal-
lenging task for models without prior knowledge of pathology.

To address this challenge, we introduced the Pathology Knowledge-enhanced
Network (PKNet), which leverages the knowledge enhancement capabilities of
LLMs, transforming implicit pathological terms into explicit visual information,
and better linking pathological expressions with pathological images. Building
upon this, we have designed a Knowledge Branch specifically for knowledge en-
hancement, as well as a Knowledge Fusion module (KFM) to better fuse knowl-
edge and expression features.

In summary, our contributions are listed as follows:

1. We propose a novel benchmark, Pathology Visual Grounding (PathVG),
which enables flexible and region-level detection in pathological images.

2. We present RefPath, a large-scale dataset consisting of 27,610 images and
33,500 language-grounded boxes, tailored to the uniqueness of pathology.

3. We developed a baseline model, the Pathology Knowledge-enhanced Network
(PKNet), which leverages knowledge enhancement from LLMs to transform
implicit pathological expressions into explicit visual features.

2 RefPath: A Large-scale Dataset for PathVG

2.1 Dataset Collection and Annotation

To adapt to the PathVG benchmark, we have specifically built a new large-scale
dataset, RefPath. To ensure the quality of our dataset, we have carefully devised
a three-step data processing and generation protocol.

Step 1: Data Collection and Preprocessing. The first step involved col-
lecting clinical whole-slide images, cropped at 40× and 20× magnifications with
a resolution of 1024×1024 pixels. RefPath was obtained from our collaborating
hospital and approved by its institutional ethics committee. 40× magnification
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(b) Word cloud of the top 100 
words in the RefPath dataset.(a) Example of RefPath 
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Fig. 3: (a): Example of RefPath: Displayed the differences in images and at dif-
ferent magnification levels. (b): Word cloud of the top 100 words in the RefPath
dataset. Displayed the pathological terms in the expression.

is used to examine fine-grained cellular morphology, such as nuclear features,
staining patterns, and structural abnormalities. In contrast, 20× magnification
assesses broader tissue context, including cell cluster arrangement, spatial dis-
tribution, and glandular organization. Pathological experts manually labeled
language-grounded boxes to identify cell clusters or regions indicative of ma-
lignancy. These annotations trained the YOLOv10 [15] network for automated
region detection. Candidate boxes were reviewed by experts to filter out irrel-
evant or unclear annotations, ensuring only high-quality data for downstream
steps.

Step 2: Pathological expression Generation. In addition to language-
grounded boxes annotations, pathological experts provided detailed expressions
for selected images. These expression annotations served as key examples for few-
shot learning by GPT-4V, improving its ability to generate accurate, context-
rich pathological expressions. To optimize GPT-4V’s output, we designed specific
prompts to focus the model on the morphological features of cells and tissues
within the annotated regions, ensuring high precision and relevance.

Step 3: Expert Validation. We divided the dataset into training and
testing sets, and invited professional pathology experts to manually review the
testing set. Five attending-level or above pathologists joined in the annotation
process. A standardized annotation protocol was jointly defined, and a cross-
checking strategy was used to ensure consistency. The experts evaluated the
textual expression based on the following criteria: (1) whether they conform to
standard clinical expression; (2) whether they correspond accurately to the spec-
ified regions; and (3) whether they provide a multifaceted, fine-grained portrayal
of the specified regions. Samples failing to meet any of these criteria were deemed
invalid and removed from the RefPath dataset. Ultimately, the training set com-
prises 24757 images with 30452 language-grounded boxes, while the testing set
includes 2853 images with 3048 language-grounded boxes.



PathVG: A New Benchmark and Dataset for Pathology Visual Grounding 5
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Isolated rounded cell cluster 
with micropapillary pattern, 
away from the main tumor 
mass.

• Cell Cluster: Appears in the slide as a 0ghtly 
packed group of cells, with boundaries between 
cells that may be either clear or indis0nct.
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dispersed tumor cells or cell clusters.
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pathology-specific terms focusing on 
their visuals in slides?
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Fig. 4: Overview of the proposed method. The model uses the knowledge en-
hancement ability of LLMs to connect pathological expressions with visual fea-
tures, integrates Expression and Knowledge features through KFM, and outputs
the final language-grounded boxes by combining visual features with CFM.

2.2 Dataset Statistics

As shown in Fig.3, we present the uniqueness of the Refpath dataset from two
aspects. First, the dataset contains multi-scale images, as shown in Fig.3(a).
At low(20×) magnification, the images emphasize cell arrangement and inter-
actions with neighboring cells, such as infiltration observed in the expression.
At high(40×) magnification, the focus shifts to cell structure and growth, such
as alveolar spaces and papillary structures observed in the expression. Secondly,
the Expression contains various pathology-related terms, as shown in Fig.3(b).
We can observe that the RefPath dataset includes pathological terms such as
‘tumor cells,’ ‘alveolar spaces,’ ‘irregular nuclei,’ and so on.

3 Method

3.1 Model Architecture

As shown in Fig. 4, PKNet consists of five main components:(1) Visual Branch,
(2) Expression Branch, (3) Knowledge Branch, (4) Knowledge Fusion Module,
and (5) Cross-modal Fusion Module(CFM).
Visual Branch: Following the common practice [14], the visual encoder starts
with a CNN backbone, followed by the visual transformer.We choose the ResNet-
50 as the CNN backbone. The visual transformer includes 6 stacked trans-
former encoder layers. Each transformer encoder layer includes a multi-head
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self-attention layer and an FFN. Given an pathological image I ∈ R3×H×W as
input of ResNet-50 to generate a 2D feature map Z ∈ RCv×Hv×Wv . The channel
dimension Cv is 256 and the width Wv and height Hv of the 2D feature map
are 1

32 of the original image size. Next, we flatten Z into Zv ∈ RCv×Nv , where
Nv = Hv ∗ Wv. Finally, pass Zv through the transformer block to obtain the
final visual feature Fv ∈ RCv×Nv .
Expression Branch: We use the 12-layer BERT as our expression text encoder.
Given an expression as the input of this branch, we first convert each word ID
into a one-hot vector. Then, in the token embedding layer, we tokenize each
one-hot vector into a language token. After that, we take the language tokens
as inputs of the expression transformer, and generate the advanced language
features Fe ∈ RCe×Ne , where Ce is the output dimension of transformer, Ne is
the number of language tokens. The process is formulated as follows:

Fe = Et(T, θt), (1)

where Et(·, θt) is the text encoder stated above. θt denotes the encoder parame-
ters.
Knowledge Branch: The Knowledge Branch is similar to the Expression Branch.
Considering the similarity between knowledge and expression, we use the same
encoder to extract knowledge features Fk. The process is formulated as follows:

Fk = Et(H(T, P ), θt), (2)

where H represents the LLM we use to associate pathological terms with corre-
sponding visual features, and P is the prompt used in the LLM.
Knowledge Fusion Module: After the individual expression and knowledge
encoding, we obtain Fe and Fk. To integrate these two features, we propose
KFM, which consists of two transformer layers. Each layer includes a multi-head
self-attention layer(MSA) and a FFN. Use KFM to get the language features Fl.
The process of KFM is formulated as follows:

Fl = FFN(MSA(Concat(Fe,Fk)). (3)

Cross-modal Fusion Module: The CFM module includes two linear pro-
jection layers (one for each modality) and a visual-language(V-L) transformer
(with a stack of 6 transformer encoder layers). CFM is used to integrate the
fused Fv ∈ RCv×Nv with Fl ∈ RCl×Nl . First, the features of both modalities
project to the same channel dimension through a linear projection layer. We
denote the projected visual features and textual features as Pv ∈ RCp×Nv and
Pl ∈ RCp×Nl , respectively. Then, we prepend a learnable embedding ([REG]
token) join to Pv ∈ RCp×Nv and Pl ∈ RCp×Nl as the input X0. After that, we
input X0 into the V-L transformer to obtain REGoutput. Finally, we leverage
REGoutput from the V-L transformer as the input of our prediction head. The
prediction head consists of an MLP layer. The output of it is a sequence b orga-
nized as (x, y, w, h) that means the coordinates of the top left vertex, the width,
and the length for the regressed bounding box.
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Table 1: PathVG results on RefPath with respect to Acc and mIoU. ↑ denotes
that a larger value is better. We highlight the best in the red. † represents
Multimodal Large Language Model.

Model Venue
Visual/Text

Encoder
RefPathall RefPath40× RefPath20×

Acc ↑ mIOU ↑ Acc ↑ mIOU ↑ Acc ↑ mIOU ↑
TransVG[4] ICCV’21 RN50/BERT-B 58.40 52.86 68.72 66.75 50.29 41.94
SeqTR[18] ECCV’22 DN53/BiGRU 55.84 51.96 72.65 71.13 42.57 36.78

CLIPVG[17] TMM’23 CLIP-B/CLIP-B 58.89 53.97 75.52 72.14 45.81 39.67
LLaVa-Med†[8] NeuIPS’23 CLIP-L/LLaMa 62.32 57.96 73.52 70.24 53.51 48.31
TransCP[14] TPAMI’24 RN50/BERT-B 61.73 56.81 74.27 71.92 51.87 44.93
SimVG[3] NeurIPS’24 ViT-B/BERT-B 63.94 59.42 75.36 73.18 52.52 46.92

D-MDETR [12] TPAMI’24 CLIP-B/CLIP-B 64.92 57.69 76.29 73.10 55.98 45.57
Ours - RN50/BERT-B 69.95 63.49 80.48 76.88 61.66 52.95

3.2 Loss Function

The model’s training uses the L1 and IoU loss functions.

L = λl1Ll1(P,GT ) + λiouLiou(P,GT ), (4)

where P and GT denote the regressed bounding box and the ground truth bound-
ing box, respectively. λl1 and λiou are two trade-off factors that balance the two
losses which are set to 5 and 2 empirically.

4 Experiment

Dataset. The RefPath dataset includes 27,610 images with 33,500 language-
grounded boxes. The training set has 24,757 images with 30452 language-grounded
boxes, while the test set contains 2,853 images with 3,048 language-grounded
boxes. It is further divided into two subsets: the 40× subset with 1,342 language-
grounded boxes and the 20× subset with 1,706 language-grounded boxes. All
methods are evaluated on the same training and test sets.
Evaluation Metric. To evaluate the model’s performance on the PathVG, we
follow the standard protocol for visual grounding [4] to report accuracy (Acc%).
Due to the unique nature of pathological images at different magnifications, us-
ing the same IoU threshold across magnifications is unreasonable. Therefore, we
set the IoU threshold to 0.7 for 40× images and 0.5 for 20× images. Additionally,
we use mIoU% for a more comprehensive comparison.
Implementation details. We use a single NVIDIA GeForce RTX 3090 GPU
for training and testing. The weights of the CNN backbone and Transformer
encoder are initialized using the pre-trained DETR model. The AdamW opti-
mizer is employed with an initial learning rate of 1e-5. The model is trained for
a total of 90 epochs. For the other comparative methods, we follow the training
and testing configurations specified in their respective papers. Our base model
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Table 2: Ablation Study. (b) refers to joining the Knowledge text and expression
text into a long text, which is then input into the Expression Branch; (c) uses a
Knowledge Branch to extract knowledge features; (d) builds upon (c) by adding
the KFM module to fuse knowledge features and expression features.

Know. Input Know. Branch KFM
RefPathall RefPath40× RefPath20×

Acc ↑ mIOU ↑ Acc ↑ mIOU ↑ Acc ↑ mIOU ↑

(a) 61.73 56.81 74.27 71.92 51.87 44.93
(b) ✓ 62.29 58.38 74.65 73.13 52.57 46.78
(c) ✓ ✓ 67.60 61.03 77.69 74.34 59.67 50.56
(d) ✓ ✓ ✓ 69.95 63.49 80.48 76.88 61.66 52.95

does not use a pre-aligned vision-language model, and all the pre-trained vision
encoder and text encoder have not seen pathological images.
Results on PathVG. Tab. 1 presents a comparison of the performance of differ-
ent models on the RefPath dataset. The compared methods include TransVG[4],
SeqTR[18], CLIPVG[17], LLava-Med[8], TransCP[14], SimVG[3] and Dynamic-
MDETR[12]. For LLaVa-Med, We changed the dataset format to the Med-GRIT-
270k[6] dataset to train LLaVa-med. As can be seen, our method achieves the
best performance across all evaluation metrics, especially on the more chal-
lenging RefPath20×. This outstanding performance can be attributed to the
need for more accurate understanding of the pathological expression in lower-
magnification images. In contrast, SeqTR performs poorly primarily because its
text encoder is a simple BiGRU, which limits its ability to comprehend patho-
logical expression.
Ablation Study. We conducted ablation experiments on the Refpath to evalu-
ate the effectiveness of each component in PKNet. Tab. 2 presents the quantita-
tive results for each configuration. First, in the baseline setup without additional
information input, as shown in (a) in Tab. 2, the performance is suboptimal.
Next, we consider incorporating knowledge information as an additional input, as
shown in (b). By simply concatenating the two text as input, we observe a slight
improvement, though the effect is not significant. Subsequently, to better extract
both knowledge and expression information, we designed a dedicated Knowledge
Branch, which led to a considerable improvement. Finally, we introduced a spe-
cially designed KFM module to fuse knowledge features and expression features,
resulting in further gains and achieving the best performance.

5 Conclusion

In this paper, to address the limitations of existing computational pathology
tasks. We propose a new benchmark, PathVG, and a dedicated dataset, RefPath.
PathVG is a new benchmark that enables precise localization of specific regions in
pathological images using fine-grained text descriptions. The proposed RefPath
dataset contains over 27,000 images with detailed annotations. Building upon



PathVG: A New Benchmark and Dataset for Pathology Visual Grounding 9

this, we introduce a new base model, PKNet, which leverages the knowledge-
enhancement capabilities of large models to effectively bridge the gap between
pathological expression and images.

Limitation. The benchmark and method proposed in this paper are based
on fully supervised learning. However, in the medical field, obtaining annota-
tions is costly. Therefore, we plan to explore semi-supervised and unsupervised
learning approaches in future work to reduce reliance on expensive annotations.
This work focuses on establishing a foundational one-to-one grounding bench-
mark. We excluded 10× to avoid one-to-many mapping ambiguity. One-to-many
grounding and broader magnifications are our future research directions, which
will be discussed in the final version.
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