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Abstract. Diabetic macular edema (DME) is a leading cause of severe
vision loss in the working-age population. Optical coherence tomogra-
phy (OCT) is the gold standard for DME management and primary care
referrals, providing retinal thickness maps (RTMs) that quantify retinal
pathologies. However, its limited accessibility in resource-constrained set-
tings necessitates more efficient solutions. While color fundus photogra-
phy (C-FP) is a cost-effective screening tool, its potential for quantitative
thickness evaluation remains underexplored. In this paper, we propose
a novel Global-to-Local conditional Diffusion model for Retinal Thick-
ness prediction (GLD-RT), the first attempt to predict RTM solely from
C-FP. Our framework predicts thickness distributions of macular region
from 2D inputs through a diffusion process guided by hierarchical global-
to-local retinal features. Experimental results demonstrate that GLD-RT
accurately depicts both physiological and pathological retinal morphol-
ogy, achieving superior performance in thickness quantification and en-
abling a more detailed examination of retinal structures. Furthermore,
C-FP-generated RTMs exhibit promising utility in facilitating DME di-
agnosis. This approach transforms conventional fundus imaging into a
comprehensive and cost-effective diagnostic tool for DME screening and
monitoring in resource-limited settings, thereby holding significant clin-
ical implications.

S. J. Song and G.Ning are the co-corresponding authors.



2 W. Cheng et al.

Keywords: Diabetic macular edema · Retinal thickness prediction ·
Color fundus photography · Conditional diffusion model

1 Introduction

Diabetic macular edema (DME) is a major cause of severe vision loss in working-
age populations, imposing substantial global healthcare burdens [6]. While anti-
Vascular Endothelial Growth Factor (anti-VEGF) therapy is the primary treat-
ment, its efficacy heavily relies on regular retinal monitoring [27]. Optical coher-
ence tomography (OCT) serves as the gold standard for retinal assessment [4]. It
generates retinal thickness maps (RTMs) representing en-face thickness between
the internal limiting membrane and Bruch’s membrane. RTM provides detailed
quantification and visualization of retinal structures, highlighting abnormalities
with accurate location, contour, and volume.

However, OCT’s accessibility is significantly constrained due to its high
cost and operational complexity [22]. Real-world studies reveal suboptimal anti-
VEGF treatment outcomes due to insufficient follow-up visits [9,21]. Therefore,
there is a pressing need for accessible monitoring solutions, which could also
facilitate home monitoring and referral triage in resource-limited settings.

Color Fundus Photography (C-FP) is one of the most widely performed exam-
inations in ophthalmology and is even feasible with smartphones [11]. However,
as a 2D imaging technique, C-FP lacks depth resolution for quantitative reti-
nal layer evaluation. Previous approaches relied on surrogate markers of retinal
thickening (lipid deposits, laser scars, etc.) [28], demonstrating limited specificity
and sensitivity for DME detection [29]. Arcadu et al. [3] developed a model to
predict retinal thickening and thickness metrics from C-FP. However, the pre-
diction accuracy failed to meet clinical standards, especially when image quality
was poor.

Recent approaches have attempted to bridge this gap by extracting thickness
information from infrared fundus photography (IR-FP). In clinical practice, C-
FP is acquired during the initial examination, while RTM examination requires
additional OCT acquisition with IR-FP as the localizer. The early treatment
diabetic retinopathy study (ETDRS) grid segments the macular region for stan-
dardized thickness evaluation [10]. Holmberg et al. [15] developed DeepRT for
RTM prediction from IR-FP, while Sun et al. [26] extended this approach by in-
corporating an unregistered C-FP to predict the ETDRS grid and more accurate
RTM. Despite these efforts, the need for an additional device to capture IR-FP
limits their clinical application, and the ETDRS grid provides only coarse mea-
surements insufficient for detailed monitoring. In addition, IR-FP exhibits inher-
ent limitations: hyperreflective artifacts, restricted illumination wavelength op-
timized for subretinal structures, and inadequate visualization of critical patho-
logical markers including hard exudates and hemorrhages [1].

In contrast, C-FP offers superior spatial resolution, a broader spectral range,
and a wider field of view. It captures critical global retinal structures, such as
vascular networks and optic nerve heads, which are key pathological biomarkers.
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Fig. 1. (a) GLD-RT leverages a dual-stream diffusion framework to integrate global
contextual features with fine-grained details. (b) Evaluation regions for RTM predic-
tion. (c)IR-FP, the localizer in OCT imaging that generates RTM, is used to register
C-FPglobal with RTM, generating C-FPmacular.

These structures are notably affected by pathologies like edema, which alters
vessel characteristics (trajectory, branching, caliber, density) and impacts adja-
cent retinal layer integrity. Meanwhile, DME-induced retinal layer disorganiza-
tion causes subtle texture and color variations in C-FP, which are challenging to
identify even for experienced clinicians. These subtle manifestations of patholog-
ical structural modifications are particularly pronounced in the macular region.
Therefore, accurate interpretation of these biomarkers facilitates more precise
retinal thickness prediction, which requires both robust high-level semantic fea-
tures and precise local macular details.

Firstly, to ensure spatial correspondence, we implement precise multi-modal
registration between C-FP and RTM in the macular region(Fig. 1c) [24]. We
present GLD-RT (Global-to-Local conditional Diffusion model for Retinal Thick-
ness prediction), a novel framework that predicts accurate RTMs directly from
C-FP. GLD-RT incorporates a hybrid CNN-transformer conditional diffusion ar-
chitecture that processes both global context and local structural details through
dual-stream feature extraction. We enable robust multi-scale feature fusion using
RETFound [32], to effectively capture heterogeneous DME manifestations.

To the best of our knowledge, this study represents the first attempt to pre-
dict RTMs solely from C-FP, enabling accurate retinal thickness assessment from
widely available C-FP. The proposed GLD-RT has significant clinical potential
to transform DME management by facilitating effective and timely intervention,
ultimately improving patients’ visual outcomes.
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2 Methodology

GLD-RT employs a decoupled encoder-decoder architecture (Fig. 1a). Parallel
encoders extract high-level semantic representations and fine-grained local fea-
tures respectively. A hierarchical diffusion decoder subsequently integrates these
features to predict RTM with global-to-local anatomical consistency.

2.1 Multi-Modal Fundus Image Registration

Due to OCT’s limited en-face resolution, we use IR-FP as an intermediary for
pixel-wise registration between the entire C-FP (C-FPglobal) and RTM ground
truth M ∈ RH×W . We extract retinal vessels as modality-agnostic features
to align images from two modalities. We use a pre-trained Unet [18] to seg-
ment vessels from C-FPglobal and IR-FP. Vessel mask keypoints are detected
by AKAZE [2], and homography matrices are computed with RANSAC [8] to
eliminate outliers. The filtered key points are matched with the k-nearest neigh-
bor (k-NN) matching strategy. C-FPglobal is nonrigidly registered to IR-FP and
cropped to obtain C-FPmacular, retaining only the macular region that corre-
sponds pixel-wise to IR-FP.

2.2 Global-to-Local Feature Extraction

Local Macular Encoder. The local macular encoder (Fig.1, Em) extracts
fine-grained features Fm ∈ RH

4 ×W
4 ×256 from C-FPmacular. Em uses the swin-

transformer [19] to capture hierarchical representations through progressive patch
merging, followed by the feature pyramid network [17] to integrate features across
four resolution levels.

Global Full-Fundus Encoder. To compensate for peripheral context loss
in C-FPmacular, we incorporate C-FPglobal to capture comprehensive retinal
structure. The proposed global full-fundus encoder (Fig.1, Eg) leverages RET-
Found [32], a SOTA retinal foundation model, to encode robust anatomical and
pathological retinal patterns. Eg employs RETFound’s ViT [7] encoder with
frozen pre-trained weights to extract rich semantic context from C-FPglobal. An
adapter aggregates high-dimensional tokens from four encoding stages into a
global feature map Fg ∈ RH

4 ×W
4 ×64.

2.3 Conditional diffusion decoder

The decoder implements a conditional diffusion framework [31] with deformable
attention modules. To expedite sampling while maintaining high fidelity, we
adopt the denoising diffusion implicit model (DDIM) [14], which employs a non-
Markovian, deterministic sampling process that requires significantly fewer steps.
During training, scheduled Gaussian noise is applied to M following a noise
scheduler [20]. Concatenated features [Fm, Fg] from dual encoders condition the
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diffusion process. The diffusion decoder(Fig. 1, Ed) learns to predict M from Mt,
the noisy RTM at timestep t. At inference, GLD-RT reverses the diffusion process
to generate RTM predictions. The model is optimized using mean squared error:

L = EM,t,Fm,Fg

[
∥M −Dd(Mt, t, Fm, Fg)∥22

]
(1)

3 Experiments

3.1 Experimental Setup

Dataset. The GLD-RT development utilizes 2,918 data triplets, each consist-
ing of corresponding OCT, IR-FP, and C-FP images, from 1,418 DME pa-
tients undergoing anti-VEGF therapy at Kangbuk Samsung Hospital (IRB: KB-
SMC 2022-12-016-004). The cohort presents mean retinal thickness of 296.99±
30.67µm and central macular thickness of 292.46 ± 75.00µm, indicating sub-
stantial macular edema prevalence. IR-FP and 31 OCT B-scans are acquired
via Heidelberg devices, which automatically generate membrane segmentations.
Experienced ophthalmologists exclude scans with poor fixation or segmenta-
tion errors. For DME diagnosis, we utilize the Mobile Brazilian Retinal Dataset
(mBRSET) [30], a collection of C-FP captured with portable cameras. It com-
prises 5,164 images from 1,291 diabetics in Itabuna, Bahia, Brazil. All images
are annotated with DME diagnosis and image quality labels.

Data Pre-processing. IR-FP is centrally cropped to 544 × 544, correspond-
ing to the OCT scanning area. C-FPglobal is downsampled from 3608×3608 to
544×544 to match IR-FP. RTM is computed from 31 B-scan lines and linearly in-
terpolated to match the resolution of IR-FP. RTM undergoes sequential smooth-
ing to preserve structure while reducing artifacts: Gaussian filtering (σ = 3)
followed by non-local means denoising (patch size: 5× 5, search window: 6× 6,
h = 0.1). For DME diagnosis, C-FP is cropped to 800×800 according to fovea
location and downsampled to 544× 544.

Implementation Details. We split the dataset at the patient level into 2043
training triplets (993 patients), 292 validation triplets (142 patients), and 583
testing triplets (283 patients). We split the mBRSET into 2409 training im-
ages (671 patients), 345 validation images (98 patients), and 688 testing images
(186 patients). For GLD-RT, Adam optimizer [16] is employed with (β1, β2) =
(0.9, 0.999), cosine decay scheduling after a 16-epoch warm-up (ramping from
1×10−8 to 6×10−5), and fixed weight decay of 1×10−2 over 300 epochs. In the
diffusion process, the timesteps for training and inference are set to 20 and 5. For
DME diagnosis, Adam optimizer is employed with a learning rate of 2 × 10−5,
(β1, β2) = (0.9, 0.999), weight decay of 1× 10−2, and ExponentialLR scheduling
(with γ = 0.999) for 100 epochs. All experiments were implemented on NVIDIA
GeForce RTX 3090 with data augmentation via random flipping and rotation.
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Table 1. Quantitative comparison of different methods for RTM prediction, with MAE
(µm) and PSNR (dB). * indicates GLD-RT outperforms baselines with p-values<0.01.

Inputs Methods RTM G1 G2 G3

MAE↓ PSNR↑ MAE↓ PSNR↑ MAE↓ PSNR↑ MAE↓ PSNR↑

IR-FP UNet [23] 27.12* 27.53* 52.33* 23.14* 32.51* 26.98* 25.46* 27.63*
DeepRT [15] 25.75* 28.33* 49.62* 23.49* 29.82* 27.64* 23.87* 27.95*

Both M2FRT [26] 23.88* 29.08* 40.13* 27.17* 26.74* 29.97 21.69* 29.61

Registered
C-FP

UNet [23] 26.75* 27.86* 46.47* 25.58* 30.82* 27.95* 25.05* 27.84*
DeepRT [15] 25.15* 28.71* 43.01* 25.73* 29.63* 28.39* 23.76* 28.05*
Swin-Unetr [12] 24.66* 28.63* 42.14* 26.94* 28.36* 28.58* 22.62* 28.13*
Trans-UNet [5] 23.89* 28.87* 41.65* 27.62* 28.03* 28.95* 22.47* 28.70*
M2FRT [26] 23.21* 29.34* 36.25* 28.31* 26.12* 30.11 21.43* 29.72
GLD-RT 20.08 30.91 31.97 30.18 22.85 31.16 19.70 30.25

Performance Metrics. For RTM prediction, we evaluated model performance
using mean absolute error (MAE) and peak signal-to-noise ratio (PSNR) across
evaluation regions (G1, G2, G3) illustrated in Fig. 1b. These regions correspond
to clinically relevant areas of the ETDRS grid. The Wilcoxon signed-rank test is
employed to compare the performance of GLD-RT with the baselines. For DME
diagnosis, model performance is quantified using accuracy, recall, F1-score, and
area under the receiver operating characteristic curve (AUC).

3.2 Quantitative and Qualitative Evaluations on RTM Predictions

We evaluated our GLD-RT against SOTA methods, including medical image
dense prediction models (UNet [23], Trans-UNet [5], Swin-Unetr [12]) and spe-
cialized RTM prediction frameworks (DeepRT [15], M2FRT [26]), as shown in
Table 1. Notably, the SOTA M2FRT [26] achieved significant improvements by
incorporating unregistered C-FP, demonstrating that C-FP offers extra thickness
information over IR-FP.

Our cross-modal registration enhanced spatial coherence for fine-detail repre-
sentation learning. Substituting IR-FP with registered C-FP in baseline models
(UNet, DeepRT, M2FRT) consistently improved model performance. This im-
provement was most evident in the challenging and clinically important foveal
region (G1), where MAE peaks. The fovea is critical for high-acuity central
vision, where minor thickness variations can substantially impact visual func-
tion. The improved foveal prediction could facilitate more accurate treatment
response assessment, optimizing the balance between intervention strategy and
visual outcome.

Despite these advances, current methods fail to fully leverage the rich infor-
mation in C-FP. Our GLD-RT significantly outperformed SOTA methods across
all retinal regions. As shown in Fig. 2, GLD-RT robustly detected thickness vari-
ations of diverse pathological lesions, providing accurate representations of subtle
and irregular retinal anatomy. The results demonstrate that the diffusion process
with global-to-local conditions effectively captures the underlying structure of
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Fig. 2. Qualitative results of our model and M2FRT. GLD-RT robustly detects diverse
pathological lesions and accurately depicts subtle and irregular retinal anatomy. Dif-
ference maps (prediction minus ground truth) further underscore these gains.

retinal layers. By generating precise and comprehensive RTM from widely avail-
able C-FP, GLD-RT provides an efficient diagnostic tool for timely intervention,
informed treatment decisions, and enhanced prognostication in retinal care.

3.3 Ablation Study

We conducted comprehensive ablation experiments to evaluate the contribution
of each component (Table 2). Our backbone, consisting of Em and Dnd (decoder
without diffusion), outperformed M2FRT, demonstrating the effectiveness of our
enhanced local feature extraction in macular regions.

The proposed Dd remarkably improved model performance, particularly in
the central macula (G1). This region exhibits a complex layered structure with
DME-induced pathological alterations. Qualitative analysis shows that the dif-
fusion process effectively captures macular structure with fine details (Fig. 3a).

The proposed Eg significantly enhanced model performance, with domain-
specific pre-training for retinal images playing a crucial role in this improvement.
RETFound pre-trained on fundus photography achieved overall improvement
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Table 2. Ablation study of RTM prediction, with MAE (µm) and PSNR (dB). *
indicates GLD-RT outperforms baselines with p-values<0.01.

Methods RTM G1 G2 G3

MAE↓ PSNR↑ MAE↓ PSNR↑ MAE↓ PSNR↑ MAE↓ PSNR↑
Em, Dnd 22.68* 29.40* 35.09* 28.84* 24.62* 30.51* 20.50* 29.72*
Em, Dd 21.22* 29.53* 32.78* 29.36 23.82* 30.60 20.18* 29.75*
Eg(ImageNet), Em, Dnd 22.16* 29.48* 34.36* 29.09* 24.33* 30.55* 20.25* 29.84
Eg(RETFound), Em, Dnd 21.28* 29.57* 33.89* 29.17* 23.98* 30.72 20.08 29.92
Eg(ImageNet), Em, Dd 20.99* 29.43* 33.03* 29.39 24.15* 30.61 20.07 29.74*
Eg(RETFound), Em, Dd 20.08 30.91 31.97 30.18 22.85 31.16 19.70 30.25

Fig. 3. (a) Qualitative results of ablation study on GLD-RT. The proposed Dd sig-
nificantly enhanced fine macular structural details, while Eg further enforced global
anatomical consistency. (b) Receiver operating characteristic curve of DME diagnosis.
(c)Experiment design of DME diagnosis.

over ImageNet initialization. Global-to-local feature conditioning outperformed
standard decoding approaches. The iterative diffusion process successfully fuses
high-level contextual information with local embeddings. Improved anatomical
consistency in predictions validates the enhanced multi-scale structural informa-
tion from C-FP (Fig. 3a).

3.4 RTMs Assistance in DME Diagnosis

To mitigate ambiguous foveal location in portable imaging, we segmented the
foveal region in C-FP using histogram equalization, thresholding, and morpho-
logical erosion [25]. We subsequently generated corresponding RTMs of the mac-
ular region and concatenated the C-FP and RTM as dual input. We employed
ResNet50 [13] (without pre-trained weights) for binary classification (Fig. 3c).

The dual-input approach consistently outperformed the CFP-only baseline(Fig.
3b), with significant improvements in accuracy (93.44% vs. 92.21%), recall (79.49%
vs. 64.41%), F1-score (85.90% vs. 75.84%), and AUC (Fig. 3b). These results
demonstrate that C-FP-generated RTMs provide complementary diagnostic in-
sights for DME diagnosis, aligning with clinical protocols requiring both OCT
and C-FP examination. Our findings underscore the potential for effective portable
retinal imaging systems in resource-constrained healthcare environments.
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4 Conclusion and Dicussion

This study presents a novel diffusion-based paradigm for RTM prediction from
C-FP in DME patients. The architecture employs parallel encoders to capture
high-level semantic representations and fine-grained local features, integrated
by a hierarchical diffusion decoder that ensures global-to-local anatomical con-
sistency. Our approach demonstrates superior accuracy and robust generaliz-
ability. Our validation in DME diagnosis further highlights the practicality of
C-FP-generated RTMs in resource-constrained clinical settings. Our method of-
fers portable, cost-effective OCT alternatives, enabling more frequent retinal
assessments and personalized treatment strategies for DME. Future directions
include: prospective clinical validation and integration into existing healthcare
workflows; incorporating higher-resolution OCT for detailed RTM prediction.
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