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Abstract. Current deep learning approaches for medical image synthesis
require training multiple specialized models for different modality conver-
sions, leading to inefficient parameter utilization. In this work, we propose
a unified text-conditioned latent diffusion framework that achieves one-
to-many medical image synthesis through two key innovations: (1) With
text-guided dynamic gating, a shared latent space construction using
pre-trained modality-specific encoders is proposed, reducing model pa-
rameters compared to training several separate models. (2) An adaptive
hybrid frequency processor combining wavelet decomposition and Fourier
analysis is designed to preserve both local textures and global anatom-
ical structures. Our comprehensive experimental evaluation in various
datasets validates that this framework is capable of transforming a single
medical imaging modality into multiple target modalities using only one
model, surpassing existing methods based on Generative Adversarial
Networks and diffusion models in terms of generation quality. The success
of this work establishes a new paradigm for efficient multi-modal medical
image synthesis through latent space unification and frequency-aware
diffusion, significantly advancing the practicality of virtual medical image
generation systems.

Keywords: Medical image Synthesis · One-to-many · Diffusion model ·
Model Pre-training

1 Introduction

Multimodal medical imaging seamlessly integrates various imaging techniques,
such as magnetic resonance imaging (MRI) [8, 18], computed tomography (CT)

*These authors contributed equally to this work.
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[14, 15] and positron emission tomography (PET) [3], dramatically improving
the precision of disease diagnosis and biomarker identification [13]. However,
its clinical applications are often hampered by high costs, limited equipment
availability, and patient safety concerns [19].

With the advancements in deep learning, image-to-image translation has
witnessed significant progress [21], which enables data-driven establishment of
mapping relationships among different modalities, eliminating the reliance on
specialized imaging devices. In the context of medical image synthesis, Generative
Adversarial Networks (GANs) [11, 28] and Variational Autoencoders [17] are
the two most prevalent deep learning-based models. However, these models
face several limitations, including training challenges, mode collapse [1], and
shortcomings in the visual quality of poor fidelity and lower resolution [9].
Furthermore, current deep learning approaches predominantly concentrate on
one-to-one medical image synthesis [7], which typically necessitates independent
setup and training for each modality, leading to increased training complexity
and computational expenses.

To address the challenge of high-quality one-to-many unified image synthesis
in multimodal medical imaging, this study proposes a generative framework using
diffusion models [4]. Through shared latent space learning and text-conditioned
encoding (i.e., text prompts), it has only O(1) parameter growth, more efficient
than training N one-to-one models with O(N) parameters. Facing the complexity
of multimodal medical images and high computational needs of diffusion models,
we pre-train modality-specific encoder-decoder networks on multimodal data.
Using VQ-GAN [6], we compress the diffusion process into a lower-dimensional
latent space. Then, a conditional diffusion model is built, taking the semantic
info from a pre-trained BERT model as a guiding signal for generating multi-
modal medical images according to various text prompts. Besides, an adaptive
frequency feature fusion module is introduced to enhance modality-specific rep-
resentations while keeping anatomical consistency. This method is anticipated
to boost precision medicine development via high-quality multimodal synthesis.
The contribution of this paper can be summarized as: this study introduces a
pioneering unified one-to-many framework for multimodal medical image synthe-
sis, leveraging text-conditioned latent diffusion with adaptive hybrid frequency
processing. Its superior performance is validated through testing on two distinct
datasets.

2 Releated Work

In medical image synthesis, the key is to map images from a source modality to a
target one, and deep learning methods with GANs have greatly advanced it, used
in various image-modality conversions like MRI to CT. But GANs suffer from
mode collapse, training issues, and have limitations in handling long-tail distri-
butions and generating high-resolution images. Diffusion Denoising Probabilistic
Models (DDPM) [12] are a powerful alternative. By simulating diffusion and
reverse diffusion, they outperform GAN-based methods [5], and latent diffusion
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Fig. 1. The overall framework involves using three pre-trained VQ-GAN models to
compress T1, FLAIR, and PET images into corresponding representations in the latent
space, followed by diffusion and reverse diffusion processes in the latent space. And
then, we can reconstruct the final image via the pre-trained decoder on the synthetic
latent represetations.

models by Rombach et al. [23] are a significant improvement. For medical image
synthesis, adding conditional information to diffusion models helps with accurate
modality transformations. Graf et al.’s use of Denoising Diffusion Implicit Models
(DDIM) [24] to convert MRI to CT [10] and Peng et al.’s conditional DDPM
framework for transforming noise to CT distribution based on CBCT [22] both
demonstrate the potential and effectiveness of conditional diffusion models in
dealing with complex medical imaging tasks. Beyond generative architectures, fre-
quency domain decomposition also enhances cross-modal synthesis. For instance,
Wu W et al.[25] significantly improved medical image synthesis by integrating
wavelet denoising into the Score-based Generative Model (SGM) framework.
Cao J et al.[2] achieved accurate lumbar spine image synthesis by proposing
multi-scale frequency channel attention and a dual-resolution frequency domain
FFN module.

3 Methods

Fig. 1 shows the overview of our method. To facilitate effective image-to-image syn-
thesis, this study initially involves the pre-training of modality-specific VQ-GAN
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with extensive datasets encompassing a range of modalities. This preparatory
step is crucial to develop a competently trained encoder and decoder capable
of handling various modal data. In the image-to-image synthesis process, the
encoder from the pre-trained VQ-GAN is utilized to transform input images into
latent space representations, which are subsequently fed into a DDPM to generate
corresponding representations of target modalities. The process culminates in
the reconstruction of these representations into final synthetic medical images.

As illustrated in Fig. 1, our proposed model comprises two encoders (E0 for
processing noisy input images, and E1 for handling feature representations of
conditional CT images) and a decoder D0. To effectively mitigate the inherent
domain discrepancies between different modality-related input information, we
incorporate learnable wavelet transform (WT) into E0. In contrast, following
E1, we employ a learnable Fourier transform (FFT) which derived from the
distinct capabilities of WT in capturing intricate local frequency features and
the exceptional efficiency of FFT in conducting comprehensive global frequency
analysis [26][27]. Specifically, we first utilize Fast FFT to extract the global
spectral information of the input features from conditional brach and perform
matrix multiplication with a learnable parameter matrix. Subsequently, the
processed spectral features are reconstructed back to the spatial domain through
inverse FFT, yielding feature ffft ∈ RC×H×W . Concurrently, for the noisy
image in E0, we employ learnable WT to decompose it into multi-scale features
and similarly perform matrix multiplication with a learnable parameter matrix.
Afterward, the multi-scale features are reconstructed back to the spatial domain
through inverse WT, resulting in feature fwt ∈ RC×H×W .

In the feature fusion stage, we use the conditional modal feature ffft as the
query matrix Q and key matrix K, and the noisy feature fwt to generate the
value matrix V , and compute the correlation of cross-modal features through an

attention mechanism: Sim(Q,K) = QKT

√
d
. The attention weights after SoftMax

normalization are used to dynamically modulate the value matrix V , thereby
achieving effective fusion of structural information from other modalities and
anatomical details from CT.

The text embedding section utilizes a pre-trained BERT model to encode
modal labels (such as ”PET”, ”T1”) into 128-dimensional vectors, which are then
processed by an MLP to generate scaling/shifting parameters for convolutional
kernels. This design enables the model to adjust feature mappings based on text
instructions, achieving controlled generation of multi-modal images. Simultane-
ously,to capture the noise characteristics at different time steps, our model, like
most diffusion models, incorporates a time embedding.

DataSet: In the one-to-many generation task, the experiment uses two datasets:
CERMEP-iDB-MRXFDG (CiM)4 and BraTS 20195. CiM contains multimodal
brain imaging (FDG PET/CT and MRI sequences T1, T2 FLAIR) from 37

4 https://doi.org/10.1186/s13550-021-00830-6
5 https://www.med.upenn.edu/cbica/brats-2019/
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healthy adults, collected on the same day using a Siemens Sonata 1.5T MRI and
Biograph mCT64 PET/CT devices to ensure temporal consistency. BraTS 2019
provides a complete imaging set for 335 brain cases (non-enhanced T1, contrast-
enhanced T1CE, T2, and FLAIR). In addition, for VQ-GAN pre-training, a
modality-specific pretraining strategy is designed, aiming to enhance the feature
representation capabilities of multimodal medical imaging. The training data for
each modality are constructed using a multi-source fusion strategy: T1-weighted
images are sourced from the T1 sequences of both the CiM and BraTS 2019
datasets; FLAIR images use the FLAIR sequences from both CiM and BraTS
2019; PET images are selected from the CiM PET images and the iFlytek Medical
Image Analysis Challenge6; T1CE sequences use T1CE images from the BraTS
2019 dataset.

Implementation Details: For data pre-processing, all images from the CiM
and BraTS 2019 datasets were resized to 256 × 256 and subjected to Z-score
standardization using pre-calculated modality-specific means and standard de-
viations. For paired data (CiM), rigid registration was applied to align CT
with MRI/PET. During VQ-GAN pre-training, modality-specific models used
external data (except CT), while the CT model was trained solely on internal
CiM data for encoding-only purposes. This study was conducted on an Ubuntu
18.04 system equipped with four NVIDIA RTX 3090 GPUs, utilizing Python
3.8 and PyTorch 1.10. For diffusion model training, the AdamW optimizer was
employed, with diffusion temporal steps set to T=1000 and β values linearly
increasing from 10−4 to 0.02. Inference efficiency was enhanced using DDIM
with 100 sampling steps. A cosine annealing strategy was applied to the learning
rate, and automatic mixed precision was adopted to optimize computational
efficiency and reduce memory usage. The pre-trained VQ-GAN encoders/decoders
and BERT text encoder remained frozen during training, while the DDPM and
adaptive frequency modules (FFT/WT) were trained in an end-to-end manner.
To prevent data leakage, subjects were partitioned at the patient level into train-
ing, validation, and test sets in an 8:1:1 ratio. The source code is available at
https://github.com/zyj15416/One-to-Many-Medical-Image-Synthesis.

Evaluation Method: To evaluate the performance of the proposed method
quantitatively, three commonly-used metrics were used: mean absolute error
(MAE), structural similarity index (SSIM) and peak signal-to-noise ratio (PSNR).
For metric calculation, synthesized images and ground truth were denormalized
to original intensity ranges. We utilized three representative methods that have
demonstrated excellent performance in the field of medical image generation as
our comparative experiments: Pix2Pix [7], ALDM [16], SynDiff [20], CDDPM [22].
Among these, Pix2Pix is a GAN-based image generation model, while SynDiff,
CDDPM, ALDM, and our proposed method are diffusion-based generative mod-
els. Notably, our model and ALDM operate as many-to-one image synthesis

6 https://challenge.xfyun.cn/topic/info?type=pet-2023
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frameworks, whereas Pix2Pix, SynDiff, and CDDPM function as one-to-one
mapping architectures, utilizing individual models for single-modal translation
tasks.

4 Experimental Results

Performance on CiM Dataset: Table 1 presents the quantitative evaluation
of various models in the CiM tesing dataset, reflecting their performance in CT-
to-T1, CT-to-FLAIR, and CT-to-PET synthesis. It is evident that our proposed
method outperforms the other approaches across all three evaluation metrics.
To be specific, for the CT→T1 synthesis task, our method outperforms all
comparative methods with results of MAE = 9.8± 1.67, SSIM = 0.88± 0.03, and
PSNR = 39.08± 3.92. Compared with the second-best method ALDM, it reduces
the MAE by 21.10%, increases the SSIM by 2.30%, and raises the PSNR by 5.04%.
In the more challenging CT→FLAIR conversion, our method achieves the current
best level with an MAE of 6.97±1.99, which is 21.69% lower than that of the best
comparative method ALDM (8.90± 2.41). It is particularly noteworthy that in
the CT→PET synthesis task, our method, while maintaining SSIM = 0.96± 0.16
(higher than other methods), improves the PSNR to 42.52± 6.83. Compared with
the DDPM-based baselines CDDPM (38.62± 7.19), SynDiff (36.52± 7.24), and
ALDM (38.55± 7.01), it increases by 10.10%, 12.90%, and 9.34% respectively.
The comprehensive evaluation of the three tasks shows that the GAN-based
method (Pix2Pix) performs worse than all DDPM-based methods. However,
our framework obtains the lowest MAE, the highest SSIM and PSNR among
all methods, and the standard deviation is generally smaller than that of the
comparative methods, which proves its robustness.

Table 1. Experimental Results on The CiM Testing Dataset.

CT-to-T1 CT-to-FLAIR CT-to-PET
MAE SSIM PSNR MAE SSIM PSNR MAE SSIM PSNR

Pix2Pix
19.80
±1.99

0.79
±0.08

31.44
±5.99

16.27
±2.91

0.74
±0.07

28.71
±2.91

10.14
±2.51

0.92
±0.18

34.62
±6.90

SynDiff
15.17
±2.16

0.84
±0.09

36.41
±5.40

12.55
±2.68

0.82
±0.11

31.90
±6.33

8.96
±1.88

0.93
±0.15

36.52
±7.24

CDDPM
13.08
±2.66

0.83
±0.07

36.24
±5.02

9.58
±2.32

0.81
±0.06

33.62
±2.57

5.92
±2.08

0.94
±0.11

38.62
±7.19

ALDM
12.42
±1.88

0.86
±0.07

37.11
±4.83

8.90
±2.41

0.84
±0.08

34.02
±2.70

6.04
±1.31

0.94
±0.18

38.55
±7.01

Ours
9.80
±1.67

0.88
±0.03

39.08
±3.92

6.97
±1.99

0.86
±0.04

37.94
±2.49

5.40
±1.95

0.96
±0.16

42.52
±6.83

Fig. 2 shows qualitative results from selected sample from the testing dataset.
From the generated results across various modalities, ALDM produces images
that, apart from our method, are the closest to the ground truth in terms of
detail; however, its images are relatively blurry. Pix2Pix not only exhibits blurry
images but also suffers from varying degrees of detail loss across all modalities.
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GroundTruth Ours ALDM CDDPM SynDiff Pix2PixInput

Fig. 2. Visual inspection for experimental results on the CiM testing dataset. On the
left are the input CT images and on the right are synthetic images of three modalities
generated by all the related methods.

Regarding CDDPM and SynDiff, their generated results show detail deficiencies
in certain modalities. In the visual representations, red arrows indicate areas
with noticeable detail loss.

Performance on BraTS 2019 Dataset: To further evaluate our method, we
re-trained our model using the BraTS 2019 dataset for one-to-many synthesis
from T1 to T1CE, FLAIR, and T2. Fig. 3 shows the test results of all related
models in the BraTS 2019 dataset. From Fig. 3, we can see that our model
outperforms the other four models in terms of quantitative metrics, which is
consistent with the results in Table 1. Furthermore, based on the visual results,
our model maintains the best integrity of lesion generation in the generated
images.

Input

MAE/SSIMT1

Ours ALDM CDDPM SynDiff Pix2PixGroundTruth

11.47/0.926 13.85/0.903 16.77/0.895 23.51/0.873 24.90/0.882

T1CE

FLAIR

T2

MAE/SSIM 12.60/0.922 15.43/0.908 18.45/0.881 24.77/0.870 26.28/0.872

   MAE/SSIM 10.33/0.931 12.69/0.916 17.42/0.890 22.76/0.880 25.17/0.874

Fig. 3. Visual inspection for experimental results on the BraTS 2019 dataset .The
red rectangular boxes highlight magnified views of pathological regions. Quantitative
metrics (MAE/SSIM) corresponding to each imaging modality are displayed below the
respective images.



8 Y. Zhang et al.

Ablation study on key components in the proposed method: To inves-
tigate the impact of key components in the proposed method, we conducted
multiple ablation experiments (see Table 2). By introducing the Adaptive Fre-
quency Feature Processing mechanism (AF), the method reduced MAE by 15.95%,
increased SSIM by 2.78%, and improved PSNR by 10.2% in the CT-to-T1 syn-
thesis task. The experimental results also show that, after incorporating the
pre-training process of the autoencoder (PR), MAE decreased by 14.86%, SSIM
increased by 1.37%, and PSNR improved by 8.34% in the CT-to-T1 synthesis
task. These performance improvements were also observed in the CT-to-FLAIR
and CT-to-PET synthesis tasks, further validating the crucial role of the adaptive
feature processing mechanism and model structure optimization in improving
the quality of medical image synthesis.

Ablation study on BERT tokenizer: Specifically, to verify the effectiveness
of the BERT tokenizer (BT) in text feature embedding, we removed BERT
and conducted experiments using one-hot vectors as a control. The results
demonstrated that the model with BT reduced MAE by 13.27%, increased SSIM
by 1.02%, and improved PSNR by 6.08% compared to the model without BT in
the CT-to-T1 synthesis task.

Table 2. Experimental Results of Ablation Study

CT-to-T1 CT-to-FLAIR CT-to-PET

AF PR BT MAE SSIM PSNR MAE SSIM PSNR MAE SSIM PSNR

✗ ✓ ✓ 11.66 0.862 35.44 8.71 0.852 35.44 6.70 0.945 39.02
±1.73 ±0.05 ±3.77 ±2.70 ±0.07 ±2.92 ±2.51 ±0.19 ±5.11

✓ ✗ ✓ 11.51 0.874 36.07 9.34 0.824 32.28 5.52 0.936 37.06
±2.20 ±0.07 ±4.14 ±3.01 ±0.09 ±3.52 ±1.77 ±0.16 ±6.65

✓ ✓ ✗ 11.30 0.877 36.84 8.82 0.859 35.91 6.70 0.949 39.42
±1.94 ±0.06 ±4.02 ±2.81 ±0.05 ±3.62 ±1.98 ±0.10 ±6.27

✓ ✓ ✓ 9.80 0.886 39.08 6.97 0.865 37.94 5.40 0.962 42.52
(Ours) ±1.67 ±0.03 ±3.92 ±1.99 ±0.04 ±2.49 ±1.95 ±0.16 ±6.83

5 Conclusion

This paper introduces a novel one-to-many multimodal medical image synthesis
method employing text-guided diffusion models. By integrating frequency-domain
feature processing and leveraging modality-specific pre-trained VQ-GANs, the
diffusion model’s performance in medical image synthesis is significantly enhanced,
demonstrating notable advantages over existing GAN-based and diffusion-model-
based approaches. However, while the current method excels in standard image
quality metrics, these metrics primarily emphasize global structural fidelity
and inadequately capture critical diagnostic details. Additionally, the model
presents certain limitations: it relies on modality-specific pre-trained VQ-GANs
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and text prompts, assuming the target modality name is a known condition.
Future research aims to incorporate physical information constraints into the
diffusion process, extend the approach to 3D volume synthesis, and validate
its efficacy in clinical trials for lesion detection tasks. Furthermore, evaluations
specific to particular tasks, the integration of domain-specific constraints, and the
exploration of few-shot adaptation or unified latent spaces for novel modalities
will be pursued.
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3. Gaël Chételat, Javier Arbizu, Henryk Barthel, Valentina Garibotto, Ian Law, Silvia
Morbelli, et al. Amyloid-pet and 18f-fdg-pet in the diagnostic investigation of
alzheimer’s disease and other dementias. The Lancet Neurology, 19(11):951–962,
2020.

4. Florinel-Alin Croitoru, Vlad Hondru, Radu Tudor Ionescu, and Mubarak Shah.
Diffusion models in vision: A survey. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2023.

5. Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image
synthesis. Advances in Neural Information Processing Systems, 34:8780–8794, 2021.

6. Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-
resolution image synthesis. In Computer Vision and Pattern Recognition, pages
12873–12883, 2021.

7. Eryan Feng, Pinle Qin, Rui Chai, Jianchao Zeng, Qi Wang, Yanfeng Meng, and
Peng Wang. Mri generated from ct for acute ischemic stroke combining radiomics
and generative adversarial networks. IEEE Journal of Biomedical and Health
Informatics, 26(12):6047–6057, 2022.

8. Massimo Filippi, Maria A Rocca, Olga Ciccarelli, Nicola De Stefano, Nikos Evan-
gelou, Ludwig Kappos, et al. Mri criteria for the diagnosis of multiple sclerosis:
Magnims consensus guidelines. The Lancet Neurology, 15(3):292–303, 2016.



10 Y. Zhang et al.

9. Meiqin Gong, Siyu Chen, Qingyuan Chen, Yuanqi Zeng, and Yongqing Zhang. Gen-
erative adversarial networks in medical image processing. Current Pharmaceutical
Design, 27(15):1856–1868, 2021.

10. Robert Graf, Joachim Schmitt, Sarah Schlaeger, Hendrik Kristian Möller, Vasiliki
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