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Abstract. Self-supervised learning (SSL) has emerged as a powerful
paradigm to mitigate neuroimaging analysis algorithms’ reliance on an-
notated data. However, existing SSL methods for brain MRI often fail to
incorporate anatomical priors inherent in brain MRI, limiting their ef-
fectiveness. Here, we present Masked Contrastive Language-Image Mod-
eling (MCLIM), a novel SSL framework that integrates knowledge from
brain atlases through text-guided representation learning. We first gen-
erate structure-specific textual descriptors based on brain atlases, with
no need for manually collecting image-text pairs. Then MCLIM employs
(1) an image restoration branch that reconstructs randomly masked im-
age patches through an encoder-decoder network, and (2) a cross-modal
alignment module that establishes semantic correspondences between im-
age features and atlas-derived text embeddings. These two learning ob-
jectives enable the simultaneous capture of fine-grained intensity patterns
and whole-brain topological relationships. The proposed method is fine-
tuned and evaluated on three brain parcellation datasets with varying
granularities and a brain lesion segmentation dataset. Experiment results
demonstrate that MCLIM outperforms state-of-the-art SSL methods and
reduces annotation effort by at least 40%. Code and pre-trained models
will be available at https://github.com/CRazorback/MCLIM.

Keywords: Self-supervised learning · Masked contrastive language-image
modeling · Brain segmentation.

1 Introduction

Accurate segmentation of brain structures and lesions from magnetic resonance
imaging (MRI) is crucial for quantitative neuroimaging analysis [7,18]. Recent
advances in supervised deep learning methods have demonstrated exceptional
⋆ J. Liang and J. Lyu contributed equally to this work.
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Frontal Pole: {

Shape: Rounded and prominent, distinctly 

delineating the anterior-most aspect

Location: Most anterior part of the frontal 

lobe, visible on sagittal MRI views

Intensity Profile: Shows a relatively uniform 

intensity, slightly lighter than the surrounding 

frontal cortex

}

Left Cerebral White Matter: {

Shape: Extensive, fibrous tissue

Location: Underlies the left cerebral cortex, 

extending throughout the hemisphere

Intensity Profile: Shows uniform appearance, 

indicative of myelinated axons

}

Fig. 1. Texture descriptions of a cortical structure and a sub-cortical structure.

performance in brain segmentation [15,22]. Nevertheless, these methods heavily
rely on extensively annotated datasets, and the annotation process for brain MRI
remains challenging due to the complexity of brain anatomy [12]. In recent years,
self-supervised learning (SSL) has emerged as a promising paradigm to address
this limitation [4,19,24]. Existing evidence suggests that SSL methods based on
image restoration can enhance the downstream segmentation performance for
medical images [3,5,25]. However, the intensity profiles across regions in brain
MRI exhibit a certain level of similarity [17], which constrains the efficacy of
general SSL approaches.

Recent studies have attempted to integrate domain-specific priors to ad-
dress the aforementioned limitations [10,14]. For instance, MDM [14] leverages
brain anatomical priors by predicting atlas-to-subject deformation fields. How-
ever, such approaches cannot precisely capture fine-grained anatomical details.
Given the rich semantic information of textual data, contrastive language-image
pre-training (CLIP) demonstrates superior image understanding capability [16].
Medical CLIP variants [6,20] trained on large-scale medical datasets further
enhance anatomical feature representation through multimodal alignment. In-
tegrating image restoration with cross-modal alignment shall make a model
learn fine-grained visual patterns and spatial distributions. However, this re-
quires large-scale paired image-text datasets that remain unavailable in neu-
roimaging research. Notably, as illustrated in Fig. 1, brain atlases contain a
wealth of detailed neuroanatomical information where brain structures can be
precisely represented through comprehensive textual description. Registration
enables atlas-based text generation for image patches by normalizing individual
scans to a standard space. Although lacking pixel-level precision, this approach
still achieves sufficient anatomical localization fidelity for structural description.

In this work, we propose a novel SSL framework for brain MRI that in-
tegrates atlas-derived textual descriptors to enhance the semantic representa-
tion capacity of vision models. Our method comprises three core components:
(1) a masked image reconstruction branch that learns local intensity patterns
through image restoration; (2) a cross-modal alignment module establishing se-
mantic correspondences between masked image patches and neuroanatomical
text embeddings; (3) a global structure matching mechanism that enhances the
aforementioned alignment. With masked image patches, the image encoder is
compelled to comprehensively capture the spatial distribution of brain struc-
tures to achieve alignment with textual features. Thus, the vision model can
jointly learn the brain’s spatial distribution patterns and anatomical semantics.
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Fig. 2. Illustration of the proposed SSL framework.

To our knowledge, this is the first SSL approach that systematically incorpo-
rates neuroanatomical text priors without requiring paired image-text training
datasets. Our method demonstrates superior performance in segmenting brain
structures and lesions, evidenced by its state-of-the-art (SOTA) results across
four benchmark datasets, while significantly reducing annotation costs.

2 Methodology

We propose an SSL framework for brain MRI segmentation that leverages textual
descriptions of brain structures. We provide an overview of the pipeline in Fig. 2,
consisting of the following steps: (1) an input image is affine registered to the
MNI152 space, and text is generated for every brain structure; (2) the affine
registered image is randomly cropped and masked, followed by joint training of a
text encoder and an image encoder-decoder network for cross-modality alignment
while reconstructing the image patch of interest.

2.1 Atlas Descriptions Bank

While natural language supervision has proven effective for enhancing visual
representation learning in the natural image domain, its application to 3D brain
MRI remains unexplored. This gap is primarily due to the absence of large-
scale paired MRI-text datasets. Given that brain atlases encapsulate expert-
level knowledge, where the delineation of brain structures in atlases is closely
tied to the structures’ anatomical locations and neurological functions, we lever-
age brain atlases to generate detailed textual descriptions for brain structures.
Specifically, for a given brain structure A in the Harvard-Oxford cortical and
subcortical structural atlases [9], we utilize GPT-4o [1] following the instruc-
tion shown in Fig. 2 to generate its precise shape description, anatomical
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location, and intensity profile. These descriptions are then formatted using
a predefined template: "This is a T1 weighted human brain MRI patch includ-
ing A, its shape is < shape description >, it < anatomical location >, it
< intensity profile >." to create structured textual representations of struc-
ture A, which are subsequently stored in the Atlas Descriptions Bank (ADB).

2.2 Masked Contrastive Language-Image Modeling

Text Generation For Image Patches. Since brain MRI exhibits strong
anatomical consistency across individuals, using full-volume inputs for pre-training
would limit text descriptions’ diversity. To address this, we employ a patch-
wise sampling strategy to ensure that different image patches contain diverse
brain structures, significantly enhancing the text descriptions’ diversity. First,
we align a brain MRI scan X to the MNI152 standard space wherein the atlas
resides, obtaining X ′. Subsequently, we perform random sampling on X ′ to get
an image patch: p = crop(X ′), and apply the same sampling to the atlas for
identifying the brain structures contained in p, denoted as: plabel = crop(altas).
Based on plabel, we retrieve the corresponding textual descriptions from the pre-
constructed ADB.

Text Embedding. We utilize the same text encoder architecture ht as that in
BiomedCLIP [23] to encode the textual descriptions and the pre-trained weights
of the text encoder released by BiomedClip are used to initialize ht. Since these
weights are pre-trained on PMC-15M [23], a large-scale medical dataset, using
them for initialization makes ht possess a certain level of understanding for MRI
images and the brain. However, directly concatenating the textual descriptions
of all brain structures within p and inputting them to ht lead to collapse, which
we attribute to a main reason: the text encoder typically used for training CLIP
imposes constraints on the text token’s length [16]. The average sequence length
of the textual data in PMC-15M is 110 tokens while p containing multiple brain
structures may result in excessively long text sequences. The discrepancy in text
sequence length between pre-training and downstream training leads to archi-
tectural incompatibility, consequently inducing training instability. To overcome
this, we adopt a prototype-based approach to represent the text features cor-
responding to p. Specifically, for each brain structure within p, we retrieve its
corresponding description Ap from ADB and compute its feature embedding:
ht(Ap). The final text feature representation for p is then obtained by aggregat-
ing these embeddings as follows:

Tp =
∑
Ap∈p

ht(Ap). (1)

Image Embedding. We incorporate an image restoration task into our SSL
framework to learn the MRI’s intensity patterns. Specifically, we randomly mask
75% of the regions in p to obtain p̄, which is then processed by an image encoder
of a U-shape network [8] to extract latent features: Vp = he(p̄).
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Pre-training for MCLIM. The model is tasked with two primary objectives.
The first objective is to reconstruct the original image patch from the latent fea-
tures. An image decoder de and an intensity head hσ are used to predict the voxel
intensity values: p′ = hσ(de(Vp)). This process encourages the model to learn the
intensity distribution of the brain MRI. The model is trained to minimize the
difference between the restored patch and the original patch. Specifically, an
l2-loss is employed on the masked voxels

Lrec(p, p
′) =

1

Ω(pm)
||pm − p′m||2, (2)

where pm is the masked voxels in the original patch, and Ω(pm) is the total
number of masked voxels. The second objective is to align the masked image
patch with the priors of the brain. We align the image features with the texture
features by the contrastive objective

LT←I
c (Tp,Vp) = − 1

B

B∑
i=1

log
exp(T i

p · Vi
p
T
/τ)∑B

j=1 exp(T i
p · Vj

p
T
/τ)

, (3)

LI←T
c (Tp,Vp) = − 1

B

B∑
i=1

log
exp(T i

p · Vi
p
T
/τ)∑B

j=1 exp(T
j
p · Vi

p
T
/τ)

, (4)

Lc = LT←I
c + LI←T

c , (5)
where B is the batch size and τ is the temperature parameter. Before com-
puting the contrastive loss, both Tp and Vp are normalized using the l2 norm:
Tp
||Tp||2

, Vp
||Vp||2

. The masked image patch enhances the model’s learning capacity,
as the image encoder must develop a comprehensive understanding of the brain’s
spatial architecture to achieve effective cross-modal alignment. Furthermore, we
enhance the masked image modeling process with the guidance of language,
which enables the visual model to capture robust anatomical priors regarding
the brain’s relatively fixed structural relationships. This ability is particularly
crucial for segmenting cortical structures that exhibit similar intensity profiles
but of different positions. To enhance the correlation between the image repre-
sentations and the brain anatomy’s characteristics, a matching head is employed
to match Vp with the structure label y by the binary cross entropy loss

Lm(y, y′) = − 1

N

∑
A∈p

yAlogy
′
A, (6)

where N is the number of structures in the atlases, yA ∈ y indicates whether
structure A is in p, and {y′A = hδ(Vp)|y′A ∈ y′} is the corresponding prediction
probability. The framework is pre-trained by optimizing the overall loss

L = Lrec + Lm + Lc. (7)

For downstream segmentation tasks, we transfer the pre-trained parameters
of he and de to the segmentation model and replace the intensity head hσ with
a segmentation head hω.
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Table 1. Quantitative DSC comparisons with SOTA SSL methods on brain segmen-
tation. Datasets A, B, C, and D are respective Mindboggle-101, CADNI, JHU, and
ATLAS2. Top 1 results are highlighted in bold.

Methods Structure Lesion AverageA B C Average D
Scratch 76.71 86.86 80.24 81.27 52.13 73.98

Model Genesis [25] 76.78 86.58 80.25 81.20 52.44 74.01
ASA [10] 79.01 86.96 80.30 82.09 53.50 74.94

PCRLv2 [24] 79.63 86.95 80.91 82.49 56.36 75.96
Tang et al. [19] 79.41 87.10 80.95 82.48 57.16 76.15

MDM [14] 79.76 87.20 81.39 82.78 57.56 76.47
MCLIM 80.54 87.17 81.97 83.22 58.53 77.04

3 Experiments and Results

3.1 Datasets and Implementation

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset is used for pre-
training in this work. Specifically, we select 5,714 T1-weighted MRI scans from
818 subjects, adhering to the criteria of isotropic resolution and a slice thick-
ness of less than 1.2 mm. All images are affine registered to the MNI152 tem-
plate using ANTs [2]. We evaluate MCLIM on three brain parcellation datasets:
Mindboggle-101 [12], CANDI [11], and JHU [21]. These datasets exhibit vari-
ability in segmentation complexity, with the number of brain structures ranging
from 30 to 289, and sample sizes varying between 37 and 101. We also evaluate
MCLIM on ATLAS2 [13], a brain lesion segmentation dataset with a sample size
of 1,271. Following MDM [14], we randomly split each dataset into training and
testing sets at a ratio of 60%/40%. To ensure consistent intensity normalization,
the intensity values of all images are scaled to the range [0, 1] based on the 1st
and 99th percentiles, followed by zero-mean and unit-variance normalization.

Foreground image patches are randomly cropped to 96 × 96 × 96. Random
rotation, gamma correction, and random scaling are applied to enlarge the train-
ing set. All experiments are conducted using PyTorch 1.13.1 with NVIDIA RTX
A6000 GPUs. The temperature coefficient τ is set as 0.05. The AdamW optimizer
with a cosine learning rate scheduler is employed to optimize the pre-training and
fine-tuning objectives. For pre-training, we train the model for 200 epochs with
10 warm-up epochs. For fine-tuning, due to varying numbers of training samples
across datasets, we train the model for 25,000 iterations with 400 warm-up it-
erations for all downstream datasets. The batch size is set to 48 and 2 and the
initial learning rate is 1e-4 and 4e-4 for pre-training and fine-tuning.

3.2 Evaluation Results

Comparisons with SOTA. For a fair comparison purpose, all evaluated meth-
ods are pre-trained from scratch according to their published code with the same
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Fig. 3. Qualitative results of MCLIM and comparative methods on representative im-
ages. Regions with visual improvements are highlighted with bounding boxes.

network architectures and datasets. We quantitatively measure the segmentation
performance using the Dice similarity coefficient (DSC) in all experiments. We
denote model training from scratch as ’scratch’ in subsequent sections. As sum-
marized in Table 1, our MCLIM obtains the highest average DSC of 83.22%
on brain parcellation, with an improvement of 0.44% over the previous best
method, i.e., MDM. Across the three brain parcellation datasets, MCLIM demon-
strates significant superiority over SOTA methods on two datasets, except that
MDM achieves a marginal advantage over the proposed approach on the CADNI
dataset. For brain lesion segmentation, MCLIM also obtains the best perfor-
mance with the mean DSC of 58.53%, achieving an improvement of 0.97% over
the previous best method. Collectively, MCLIM obtains the best average DSC
across all four datasets, demonstrating its robustness. Qualitative comparisons
in Fig. 3 show that our method demonstrates superior discrimination capability
in segmenting the temporal lobe and the boundary of the dentate nucleus over
comparative approaches while achieving notably lower false positive rates in le-
sion segmentation. These experimental results demonstrate that the proposed
method has effectively learned the medical prior of the human brain.

Ablation Studies. We evaluate the effectiveness of each component in MCLIM.
As shown in Table 2, learning the medical priors of the brain improves the down-
stream segmentation performance of brain structures and lesions over scratch by
1.95% and 6.40% in DSC (the 1st line vs. the last line). Meanwhile, integrat-
ing medical knowledge can improve the mask image modeling (MIM) baseline
(the 2nd line vs. the last line). We also observe that the performance improve-



8 J. Liang et al.

Table 2. Ablation analysis for the loss terms. Datasets A, B, C, and D are respective
Mindboggle-101, CADNI, JHU, and ATLAS2. Top 1 results are highlighted in bold.

Lrec Lm Lc
Structure Lesion AverageA B C Average D

Scratch 76.71 86.86 80.24 81.27 52.13 73.98
✓ 77.31 86.93 81.33 81.85 54.78 75.08

✓ ✓ 77.27 87.14 81.06 81.82 56.32 75.44
✓ ✓ 77.55 87.09 81.42 82.02 56.27 75.58
✓ ✓ 79.52 87.11 81.65 82.76 58.09 76.59
✓ ✓ ✓ 80.54 87.17 81.97 83.22 58.53 77.04

ment over MIM mainly comes from Lc rather than Lm (the 4th line vs. the 5th

line), indicating that the supervision signals in the form of language provide the
image encoder with a deeper understanding of brain anatomy. We also evalu-
ate MCLIM’s data efficiency power. As shown in Fig. 4, compared to scratch,
MCLIM can effectively reduce the annotation effort by at least 40%.
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Fig. 4. Segmentation results of MCLIM with different annotation rates. The dotted
line represents the performance of scratch with 100% training data.

4 Conclusion

In this paper, we propose MCLIM, a novel SSL framework for brain segmenta-
tion. Guided by brain atlases, MCLIM generates text descriptions for brain struc-
tures without requiring paired image-text training data. A contrastive language-
image loss and a brain structure matching loss are integrated into the context
restoration SSL framework to enhance the learning capability of the image en-
coder. We successfully demonstrate that MCLIM outperforms SOTA methods in
brain segmentation while significantly reducing annotation costs. Furthermore,
we validate that the success of our method primarily stems from text-based su-
pervision signals. Future work shall include enhancing MCLIM by incorporating
real-world data and extending it to brain classification tasks.
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