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Abstract. Developing advanced medical imaging retrieval systems is
challenging due to the varying definitions of ‘similar images’ across dif-
ferent medical contexts. This challenge is compounded by the lack of
large-scale, high-quality medical imaging retrieval datasets and bench-
marks. In this paper, we propose a novel methodology that leverages
dense radiology reports to define image-wise similarity ordering at mul-
tiple granularities in a scalable and fully automatic manner. Using this
approach, we construct two comprehensive medical imaging retrieval
datasets: MIMIC-IR for Chest X-rays and CTRATE-IR for CT scans,
providing detailed image-image ranking annotations conditioned on di-
verse anatomical structures. Furthermore, we develop two retrieval sys-
tems, RadIR-CXR and RadIR-ChestCT, which demonstrate supe-
rior performance in traditional image-image and image-report retrieval
tasks. These systems also enable flexible, effective image retrieval con-
ditioned on specific anatomical structures described in text, achieving
state-of-the-art results on 77 out of 78 metrics.

Keywords: Image Retrieval · Medical Imaging · Vision-Language Pre-training.

1 Introduction

The objective of this paper is to develop an image retrieval system for medical
applications that ranks instances in a retrieval set based on their relevance to
a query, which includes a radiology image and an optional text condition in-
dicating the region to focus on, i.e., the name of anatomy. Such a system has
broad implications in enhancing clinicians’ ability to identify similar cases, sup-
porting diagnosis and treatment planning, and facilitating medical education
and research [2,17,15,5]. Furthermore, in building generalist models [7,20,22],
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Fig. 1. Fine-grained image similarity derived from report. We decompose re-
port into anatomy-centric findings and leveraging state-of-the-art medical language
model RaTEScore to assess their relevance. We treat this as a proxy for the fine-
grained image-image similarity, preserving their rankings in clinical meanings.

retrieval-augmented generation (RAG) plays a crucial role in reducing halluci-
nations and supporting case-based reasoning by grounding outputs in retrieved
evidence.

Developing medical image retrieval systems is particularly challenging due
to the complexity of defining image similarity, which depends on multiple fac-
tors such as global appearance, localized findings, and specific pathologies. For
instance, two patients with different diseases may exhibit similar localized ab-
normalities. Capturing these nuanced relationships requires a granular under-
standing beyond coarse pathological or image-level labels. However, manual an-
notation of fine-grained similarity is often impractical due to its labor-intensive
and subjective nature, especially at the scale needed for large datasets. Existing
benchmarks [1,4,9,12,13] typically rely on coarse image-level labels or limited
manual annotations, which fail to capture the full spectrum of clinically relevant
features, thereby limiting the development of scalable systems.

To address the challenges we propose a novel medical image ranking pipeline
by mining the multi-grained annotations from corresponding radiology reports.
Specifically, given a certain anatomy structure, we first standardize the paired
reports and extract the relative findings. Then, we adopt the text-level similarity
ranking of the findings based on well-designed language-wise metrics [23], to, in
turn, represent the image similarity ranks regarding this anatomy structure. This
pipeline enables the construction of multi-granular similarity ranking training
data in a scalable and automated manner, for both global image matching and
fine-grained retrieval conditioned on anatomy structures, as shown in Figure 1.
Based on it, we extend two widely used datasets, MIMIC-CXR [11] and CT-
RATE [6], to create two large-scale image retrieval datasets, MIMIC-IR and
CTRATE-IR, with detailed annotations of image-image similarity ordering
mined from dense report annotation, serving for both training and evaluation.
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On model development, leveraging the two datasets, we have trained two re-
trieval systems: RadIR-CXR and RadIR-ChestCT. These systems achieve
state-of-the-art performance in traditional image and image-report retrieval,
while further enabling fine-grained retrieval with anatomy terminology as text
condition. They allow users to query specific anatomies, bridging the gap between
global similarity and localized retrieval, thus better fitting clinical demands.

In summary, our contributions are threefold: (i) We propose a novel, fully au-
tomated pipeline to structure radiology reports and bridge multi-grained image-
image relevance in a scalable manner. (ii) We develop MIMIC-IR and CTRATE-
IR, two large-scale and comprehensive datasets accompanied by evaluation bench-
marks for Chest X-ray and Chest CT image retrieval, with detailed annotations
capturing image-image similarity ordering based on regional findings. (iii) We
present two state-of-the-art image retrieval systems, RadIR-CXR and RadIR-
ChestCT, which demonstrate superior performance in global image retrieval
and substantial advancements in image retrieval conditioned on anatomies.

2 Problem Formulation

Considering a collection of radiology image-report pairs, denoted as D = {(I1, R1),
..., (IK , RK)}, where Ii ∈ RH×W×C refers to the radiology image, and Ri is the
corresponding clinical report. The goal of the image retrieval task is to find
the similar cases from D, given a query image Iq and optionally, a conditional
query Q referring to an anatomical structure. This is equivalent to ranking the
candidates in D based on their relevance to the query image:

{r1, r2, ..., rK} = I(Simg(Iq, Ij | Q)), ∀Ij ∈ D (1)

where ri denotes the rankings, and I(·) is a function that indexes the image
similarity Simg(·). When Q is not provided, this reduces to a conventional image
retrieval task without any conditions.
Discussion. In this ranking task, estimating the exact similarity values between
images is unnecessary. Instead, we focus on preserving the relative similarity
ordering. In this paper, we make the assumption that radiology reports have
faithfully captured the critical findings of their paired images. Consequently, the
similarity ranking of images should align with the similarity ranking of their
corresponding reports. Thus, we use the similarity between radiology reports,
denoted as Frpt(·), as a feasible and practical proxy for image similarity:

I(Simg(Iq, Ij | Q)) = I(Srpt(Rq, Rj | Q)), ∀Ij , Rj ∈ D (2)

The following sections detail the procedure for quantifying similarity between
reports and leveraging these rankings to train the image retrieval system.

3 Dataset Construction

In this section, we propose an automatic pipeline to quantify image-to-image
similarity ordering, via mining their paired radiology reports, as shown in Fig-
ure 1. We first introduce the data sources in Section 3.1. Then, we detail the
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two main procedures in the pipeline: report decomposition in Section 3.2 and
relevance quantification in Section 3.3.

3.1 Data Sources

We utilize two widely used datasets: MIMIC-CXR [11] is the largest chest
X-ray dataset, containing 377,110 image-report pairs; while CT-RATE [6] is a
large-scale chest CT dataset with 25,692 non-contrast CT volume-report pairs.
These reports include detailed radiological findings and impressions, which are
essential for defining clinically meaningful similarities between images.

3.2 Report Decomposition

We describe our process for extracting and structuring anatomical regions and
their associated findings from radiology reports. This involves building a compre-
hensive anatomy terminology set, extracting regional findings, and integrating
hierarchical relationships between anatomical structures, as detailed below.
Anatomy Terminology Set. We utilized RadGraph-XL [3] to extract anatom-
ical structures from radiology reports. A total of 90 high-frequency anatomical
structures commonly referenced in radiology were identified. To ensure consis-
tency, synonymous terms (e.g., “superior vena cava” and “SVC”) were unified.
The anatomical structures were further organized into a hierarchical framework,
capturing relationships between parent structures (e.g., “lungs”) and their sub-
structures (e.g., “left lung” and “right lung”).
Regional Findings Extraction. From the ‘Findings’ section of the reports,
we extract region-specific findings by segmenting the content into sentences with
periods as delimiters, and linking each sentence to the anatomical structures it
mentions based on the anatomy terminology set.
Hierarchical Structure Integration. Relationships between anatomies, such
as “lungs” and “left lung”, are utilized to merge findings from substructures into
their parent structures. This integration provides a comprehensive, multi-level
representation of findings for each anatomical region.

3.3 Relevance Quantification

After performing fine-grained report decomposition, we can further quantify the
relevance between findings from different reports regarding the same anatomy,
as a substitute for the corresponding fine-grained image similarity on it. Here, we
apply RaTEScore [23], a state-of-the-art model that provides a robust evaluation
metric for radiology report texts similarity based on key entities, as a proxy:

Srpt(Rq, Rr | Q) = RaTEScore(E(Rq | Q), E(Rr | Q)) (3)

where E denotes extracting regional findings from the raw reports regarding Q
heuristically with rule-based string matching. For image retrieval without specific
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Fig. 2. Architecture and training procedures of RadIR. (a) In stage 1, we pre-
train a CLIP-style model for unconditional image and image-report retrieval; (b) In
stage 2, we extend the pre-trained model for image retrieval conditioned on anatomies.

query conditions that Q is empty, E will return the original report that evaluates
the similarity of entire reports as a substitute for the global image similarity.

Summary. We extract 2,582,477 regional findings in total, covering 90 anatom-
ical structures. We further quantify over 132 billion fine-grained image-image
relevance between them. We name the two proposed large-scale and multi-
granularity datasets as MIMIC-IR and CTRATE-IR, as the foundation to
train and benchmark the radiology image retrieval systems.

4 RadIR

In this section, we present the details to build RadIR based on the datasets we
construct above. The training procedure includes two stages. In Section 4.1, we
pre-train the CLIP-style model for unconditional image retrieval; In Section 4.2,
we extend the pre-trained model for retrieval task conditioned on a text query.

4.1 Unconditional Image Retrieval

Architecture. As shown in Figure 2(a), in this setting, we directly encode
the raw images and reports without considering extra text queries. We adopt a
typical CLIP-style [18] model with a Vision Transformer based image encoder
Φvisual(·) and a BERT-based text encoder Φtext(·):

v = Φvisual(I) ∈ Rd, t = Φtext(R) ∈ Rd (4)

where I denotes a radiology image, R denotes a radiology report, v and t denotes
their features respectively, and d is the dimension.
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Table 1. Unconditional image to image, and image to report retrieval re-
sults. Recall and NDCG results are presented in percentage. The best results on each
metric are bolded.

Method Recall@k ↑ NDCG ↑

k=5 k=10 k=50 k=100 k=5 k=10 k=50 k=100

on MIMIC-IR (Chest X-Ray)

Image2Image
MedCLIP 3.05 4.77 12.65 18.93 67.15 44.49 16.74 10.70
BioMedCLIP 2.04 3.30 8.20 12.68 64.49 42.72 16.07 10.27
PMC-CLIP 2.20 3.58 8.07 12.03 63.23 41.88 15.75 10.06
RadIR-CXR 5.18 6.94 15.45 21.29 68.23 45.21 17.01 10.88

Image2Text
MedCLIP 0.19 0.28 2.04 3.77 58.22 38.58 14.51 9.27
BioMedCLIP 0.47 0.78 4.23 8.10 62.79 41.60 15.64 9.99
PMC-CLIP 0.31 0.44 2.73 5.43 50.96 35.18 13.99 9.06
RadIR-CXR 4.33 6.88 18.18 25.34 69.07 45.76 17.21 11.00

on CTRATE-IR (Chest CT)

Image2Image
CT-CLIP 19.43 28.76 57.51 68.13 74.48 75.20 78.05 79.96
RadIR-ChestCT 20.75 30.57 62.44 72.80 74.60 75.47 78.51 80.49

Image2Text
CT-CLIP 5.05 8.19 25.27 39.92 67.57 70.50 76.67 79.45
RadIR-ChestCT 6.65 12.99 36.72 52.91 69.18 72.11 78.12 80.84

Training Objectives. Given a batch of N samples, we can calculate the fol-
lowing similarity matrix as prediction:

Si2t = vtT ,St2i = tvT ,Si2i = vvT , v t ∈ RN×d (5)

where S denotes the similarity matrices from image-text and image-image, re-
spectively, and v, t denotes the visual or text embedding set. Then, We applied
masked infoNCE loss (MIL) [16] and triplet loss (TL) [8] to optimize our model:

L = λ1LMIL(Si2t,T) + λ2LMIL(St2i,T) + λ3LTL(Si2i,T) (6)

where T ∈ RN×N is a text-text similarity matrix calculated via RaTEScore, as
illustrated in Section 3. λ1, λ2, λ3 are hyper-parameters. LMIL is a variant of the
classic infoNCE loss:

LMIL(S,T) = − 1

N

N∑
i=1

log

(
exp(Sii)∑N

j=1 exp(Sij) · (I+ 1[T < τ ])ij

)
(7)

where 1[T < τ ] is a matrix that masks out the potential positive elements outside
the diagonal, based on a predefined threshold τ .

4.2 Text-Conditioned Image Retrieval

Architecture. As shown in Figure 2(b), given a conditional query Q, we employ
a fusion module Φfusion to extend the model for conditional image retrieval:

f = Φfusion(Φvisual(I), Φtext(Q)) ∈ Rd (8)
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Table 2. Conditional image retrieval results on MIMIC-IR. Recall scores are
averaged and aggregated by anatomical region, and presented in percentage. Anatomies
are sorted in descending order of their frequency in train set, with the ‘head’ regions
at the top and the ‘tail’ regions at the bottom. The best results for each anatomy are
bolded. Greener suggests higher improvement over baselines.

Anatomy Recall@3 ↑ Recall@5 ↑ Recall@10 ↑

PMC BioMed Med RadIR PMC BioMed Med RadIR PMC BioMed Med RadIR
CLIP CLIP CLIP CLIP CLIP CLIP CLIP CLIP CLIP

Pleura 16.11 18.67 21.98 25.32 23.51 28.35 30.44 32.99 34.09 40.57 40.52 44.60
Bones 12.06 17.24 13.43 18.79 20.97 24.74 21.91 26.16 34.85 35.04 35.23 38.09
Lung 7.08 9.48 8.62 11.37 11.55 12.54 14.88 16.46 18.03 19.03 22.41 22.31
Diaphragm 16.11 17.75 18.95 21.13 23.51 24.29 23.18 27.13 34.09 36.65 34.95 37.77
Vascular 14.80 19.57 22.93 30.65 29.04 27.97 32.63 36.39 39.96 39.85 45.76 47.37
Thorax 4.24 11.84 8.61 14.52 12.96 17.02 15.96 19.59 20.83 25.42 27.37 29.27
Heart 11.51 10.44 7.90 16.02 15.84 16.23 12.90 23.40 26.15 25.25 25.76 32.79
Airway 15.93 12.28 14.85 22.50 24.47 16.91 22.71 29.89 35.10 26.43 34.39 42.97
Stomach 7.41 11.85 12.59 19.23 10.37 15.56 20.00 22.22 22.96 23.70 24.44 31.11
Bronchi 16.83 13.86 13.86 28.71 20.79 16.83 20.79 31.68 32.67 22.77 38.61 44.55

Average 12.58 14.30 14.37 20.83 19.67 20.04 21.54 26.59 30.46 29.47 32.94 37.08

where f denotes the fused feature. This enables the model to capture relevant
visual features based on the anatomy.
Training Objectives. In contrast to the global similarity matrix T based on
complete reports in Section 4.1, we introduce TQ as an anatomy-conditioned
similarity matrix constructed from regional findings, based on equation 3. Mean-
while, the predicted conditional image-image similarity result Sf2f is derived
from the dot product of fused features. We then apply triplet loss on them:

L = LTL(Sf2f ,TQ) (9)

5 Experiment Settings and Results

We validate RadIR on MIMIC-IR and CTRATE-IR, with both unconditional
image retrieval, image to report retrieval, and image retrieval conditioned on
anatomy name. In all experiments, we follow the official train-test split of MIMIC-
CXR and CT-RATE. In this section, we first introduce our baselines in Sec-
tion 5.1 and benchmark metrics in Section 5.2; Then, we analyze the experiment
results in Section 5.3 and Section 5.4.

5.1 Baseline

We take the following methods as baselines: BioMedCLIP [21], a vision-language
foundation model for 2D biomedical images pre-trained on 15M image-text
pairs; MedCLIP [19], a decoupled image-text contrastive learning framework
for chest X-Ray images trained on MIMIC-CXR [11] and CheXpert [10]; PMC-
CLIP [14], a CLIP-style model pretrained on PMC-OA with 1.6M biomedical
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Table 3. Conditional image retrieval results on CTRATE-IR. Recall scores are
in percentage. Anatomies are in descending order of their frequency in train set, with
the ‘head’ anatomies at the top and the ‘tail’ anatomies at the bottom. The best results
for each anatomy are bolded. Greener suggests higher improvement over baseline.

Anatomy #Samples Recall@3 ↑ Recall@5 ↑ Recall@10 ↑

CT-CLIP RadIR CT-CLIP RadIR CT-CLIP RadIR

Bone 23.5k 45.75 49.76 56.33 60.51 67.31 71.03
Heart 23.3k 33.75 34.15 43.19 43.68 55.72 59.44
Bronchie 21.7k 55.18 57.76 67.20 69.42 75.81 78.43
Trachea 21.7k 57.43 60.48 69.24 70.51 77.71 80.61
Pleura 18.2k 35.14 40.57 44.59 54.14 60.00 71.64
Vertebrae 13.5k 57.69 62.04 63.69 66.91 71.89 73.56
Liver 12.5k 72.97 78.14 77.58 79.26 79.81 80.23
Aorta 11.8k 48.90 52.44 54.04 59.26 62.56 65.93
Spinal canal 2.4k 76.39 79.17 83.33 90.28 90.28 91.67
Gallbladder 2.4k 19.10 32.58 25.84 42.70 39.33 52.81
Clavicle 1.2k 64.29 89.29 75.00 96.43 96.43 100.00
Ascending aorta 1.6k 23.73 48.28 37.29 56.90 50.85 65.52
Pulmonary artery 1.6k 18.18 28.79 31.82 50.00 53.03 68.18
Breast 1.1k 54.17 73.91 75.00 78.26 75.00 91.30
Pancreas 0.8k 20.51 48.72 38.46 61.54 56.41 74.36
Stomach 0.8k 33.33 54.17 45.83 75.00 79.17 95.83

Average / 43.85 55.23 54.44 66.29 67.09 76.12

image-caption pairs; and CT-CLIP [6],a vision-language foundation model for
Chest CT images pre-trained on CT-RATE [6]. Note that none of these base-
lines support conditional image retrieval, thus we evaluate their performance
using retrieval results derived from holistic image and text features across all
tasks.

5.2 Metric

Recall@k evaluates whether the correct items are in the top-k predictions. In
image-report retrieval, we consider the paired data as the correct item; In image-
image retrieval, we view candidates with similarity over 0.9 as correct items.
NDCG@k evaluates the predicted ranking by comparing it with the ideal rank-
ing. First, the Discounted Cumulative Gain (DCG) of a ranking is calculated as

DCG =
∑k

i=1

reli
log2(i+ 1)

, where reli represents the ground-truth similarity

score of the item ranked at position i, and k is the number of items to consider
in the ranking. The NDCG is defined as the ratio of the DCG of a predicted
ranking to the DCG of the ideal ranking (IDCG) obtained by sorting the items
by ground-truth similarity score: NDCG = DCG/IDCG.

5.3 Results on Unconditional Retrieval

As demonstrated in Table 1, after fine-tuning, RadIR consistently exceeds the
state-of-the-art CLIP models on image-image retrieval task, and on both CXR



RadIR 9

and Chest CT datasets. Notably, RadIR can also be applied for image-report re-
trieval and achieves notable improvement over baselines. These results highlight
that RadIR can perform effectively in these traditional retrieval tasks.

5.4 Results on Conditional Image Retrieval

Table 2 shows that RadIR outperforms baselines in 9 out of 10 anatomical re-
gions on CXR images, and achieves the best performance on average; While
in Table 3, RadIR consistently outperforms CT-CLIP on metrics. In addition,
we observe that RadIR performs better on tail anatomies less frequently men-
tioned in the report. We hypothesize that this is because baselines trained on
image-text pairs exhibit a bias towards more frequent anatomies. While RadIR,
supporting conditional retrieval, can effectively adapt its focus to the queried
anatomy, demonstrating superior robustness and versatility.

6 Conclusion

In this paper, we propose a novel methodology that leverages dense radiology
reports to define image-wise similarity ordering at multiple granularities in a
scalable and fully automatic way. We contribute two comprehensive datasets,
MIMIC-IR and CTRATE-IR, with comprehensive and fine-grained image sim-
ilarity ranking annotations for Chest X-ray and CT images. We build RadIR-
CXR and RadIR-ChestCT, which demonstrate superior performance in diverse
retrieval tasks, and could meet clinical demands flexibly by supporting fine-
grained image retrieval conditioned on anatomy.
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