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Abstract. Medical image restoration (MedIR) aims to recover high-
quality medical images from their low-quality counterparts. Recent ad-
vancements in MedIR have focused on All-in-One models capable of si-
multaneously addressing multiple different MedIR tasks. However, due
to significant differences in both modality and degradation types, us-
ing a shared model for these diverse tasks requires careful consideration
of two critical inter-task relationships: task interference, which occurs
when conflicting gradient update directions arise across tasks on the
same parameter, and task imbalance, which refers to uneven optimiza-
tion caused by varying learning difficulties inherent to each task. To ad-
dress these challenges, we propose a task-adaptive Transformer (TAT),
a novel framework that dynamically adapts to different tasks through
two key innovations. First, a task-adaptive weight generation strategy
is introduced to mitigate task interference by generating task-specific
weight parameters for each task, thereby eliminating potential gradient
conflicts on shared weight parameters. Second, a task-adaptive loss bal-
ancing strategy is introduced to dynamically adjust loss weights based
on task-specific learning difficulties, preventing task domination or un-
dertraining. Extensive experiments demonstrate that our proposed TAT
achieves state-of-the-art performance in three MedIR tasks—PET syn-
thesis, CT denoising, and MRI super-resolution—both in task-specific
and All-in-One settings. Code is available at this https URL.
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1 Introduction

Medical image restoration (MedIR) is a fundamental task in medical imaging,
focused on reconstructing high-quality (HQ) images from their low-quality (LQ)
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counterparts. LQ medical images often suffer from substantial diagnostic quality
degradation due to suboptimal imaging conditions, such as reduced radiation ex-
posure time and insufficient radiation intensity, which are employed to minimize
potential health risks to patients. Significant progress has been made in recent
years for many specific MedIR tasks, including PET synthesis [1,2,3,4,5,6,7], CT
denoising [8,9,10,11,12], and MRI super-resolution [13,14,15,16].

Despite their success in specific scenarios, task-specific MedIR models face
critical limitations that hinder their clinical adaptability. (1) Limited General-
ization. In complex multimodal imaging workflows (e.g., PET/CT or PET/MRI),
multiple MedIR tasks often coexist. However, due to inherent differences in imag-
ing modalities and degradation types, task-specific models trained for one MedIR
task struggle to adapt to others, leading to significant performance drops. (2)
Inefficiency and Redundancy. Task-specific models require redundant devel-
opment efforts and resource allocation, as each task demands separate architec-
tures, training pipelines, storage solutions, and computational resources. This
fragmented approach escalates costs and complicates clinical deployment. (3)
Data Scarcity and Isolation. Task-specific models are particularly vulnera-
ble to data scarcity, as they rely on narrow, task-specific datasets that are often
limited in medical imaging. This constraint not only increases their susceptibility
to model overfitting but also isolates them from potential cross-task and cross-
modal synergies due to their task-specific training. In summary, task-specific
models face limitations in generalization, efficiency, and data availability, which
collectively hinder their scalability and real-world applicability.

To overcome the limitations of task-specific models, recent efforts [17,18,19,20,21]
have focused on developing an All-in-One model capable of handling multiple
tasks simultaneously. This approach directly addresses the three key limitations
of task-specific models: (1) improving cross-task generalization through multi-
task training, (2) eliminating redundancies by consolidating workflows into a
single model, and (3) mitigating data scarcity by leveraging both multitask and
multimodal data. To handle various restoration tasks, recent All-in-One meth-
ods in natural image restoration use advanced techniques, such as contrastive
learning [17] and visual prompting [20], to learn task-discriminative represen-
tations that guide the model’s adaptation to different tasks. In medical image
restoration, the pioneering work of AMIR [21] introduces a task routing strategy
that allocates different tasks to separate network paths. These approaches have
significantly contributed to the development of effective All-in-One models.

However, due to the substantial differences between MedIR tasks in terms
of both modality and degradation types, using a shared model for such diverse
tasks requires careful consideration of two crucial inter-task relationships: task
interference, which occurs when conflicting gradient update directions arise on
the same parameter between tasks [21], and task imbalance, which refers to un-
even optimization caused by varying learning difficulties inherent to each task
[22]. Regarding task interference, while several methods have attempted to ad-
dress this [18,21], they still lack the adaptability to handle the complexity and
diversity across different MedIR tasks. This is because most of them still rely
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on fixed parameters shared across tasks, which prevents them from adapting to
the specific needs of each task. When gradient conflicts arise in these shared pa-
rameters, they inevitably lead to suboptimal performance. On the other hand,
task imbalance has been largely overlooked in existing studies. These methods
fail to recognize that different MedIR tasks have varying levels of learning diffi-
culty, and using a uniform weight for the loss across tasks often results in some
tasks dominating while others remain undertrained. Therefore, there is a press-
ing need for novel All-in-One approaches that effectively address the inter-task
relationships of task interference and task imbalance in MedIR tasks.

In this paper, we introduce a novel task-adaptive transformer (TAT) that
effectively addresses two crucial inter-task relationships—task interference and
task imbalance—for All-in-One medical image restoration. This is accomplished
through two key innovations: a task-adaptive weight generation strategy and
a task-adaptive loss balancing strategy. Specifically, (1) to mitigate task in-
terference between distinct MedIR tasks, we propose a task-adaptive weight
generation strategy that dynamically generates task-specific weight parameters
for processing, thereby eliminating potential conflicts in weight updates. (2) To
properly address task tmbalance and prevent task domination or undertraining,
we introduce a task-adaptive loss balancing strategy that dynamically adjusts
the loss weights for different tasks during training, ensuring the most effective
optimization path. Extensive experiments demonstrate that our proposed TAT
achieves state-of-the-art performance on tasks such as PET synthesis, CT de-
noising, MRI super-resolution, and All-in-One medical image restoration.

2 Method

In this section, we provide a detailed introduction to our proposed task-adaptive
transformer (TAT). We first describe the overall architecture of TAT in Subsec-
tion 2.1. Then, in Subsections 2.2 and 2.3, we present the two key innovations:
the task-adaptive weight generation strategy, which addresses task interference,
and the task-adaptive loss balancing strategy, which addresses task imbalance.

2.1 Overall Network Architecture

As shown in Fig. 1, the proposed TAT features a multi-level U-shaped archi-
tecture consisting of a three-stage encoder with Transformer blocks [23] and a
four-stage decoder incorporating weight-adaptive Transformer blocks (WATBs).
To address the issue of task interference, a task representation extraction net-
work (TREN) is employed to extract task-specific representations that guide
the generation of weights in the WATBs. The TAT begins by extracting initial
features, denoted as I'F € REXWXC from an input low-quality (LQ) medical
image I*? € RE*XW>1 yia a 3 x 3 convolutional layer, where H, W, and C rep-
resent the height, width, and channel dimensions, respectively. These features
are then encoded into latent representations I“¥" through the Transformer-based
encoder. The pipeline subsequently splits into two branches: the first processes
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Fig. 1. Overview of the proposed task-adaptive transformer (TAT) network.

I™F through the decoder to produce deep features I”F, while the second passes
a gradient-detached copy of I“*" through TREN to extract a task-specific rep-
resentation Z € RY. The WATBs utilize Z to generate task-adaptive weights,
enabling specialized feature refinement during the decoding process. Finally, a
3 x 3 convolutional layer transforms I”F into a residual image It € RE*Wx1
which is added to the original LQ image I“? to yield the restored high-quality
(HQ) output, [HQ = [LQ 4 R,

2.2 Task-Adaptive Weight Generation Strategy

Most existing All-in-One models share a common limitation: they rely on a
single model with fixed parameters to handle multiple tasks. This one-size-fits-
all approach often results in suboptimal performance due to task interference,
where conflicting gradient updates from different tasks impede effective param-
eter optimization. As a result, the weight parameters are not specialized for any
particular task, leading to diminished performance across broad. To address this,
we propose a novel task-adaptive weight generation strategy that dynamically
generates task-specific parameters for specialized processing, thereby eliminat-
ing potential interference. We introduce this strategy from two perspectives:
task-specific representation extraction and task-adaptive weight generation.
Task-Specific Representation Extraction. Previous All-in-One models
for natural images often utilize advanced techniques, such as contrastive learning
[17] or auxiliary classification tasks [18], to learn task-specific representations as
guidance. However, we argue that these methods are unnecessary in the context
of medical image restoration. Due to the significant semantic differences between
various medical imaging modalities, the latent features encoded with seman-
tic information inherently exhibit task-specific variations. Consequently, even
straightforward feature extraction from the latent feature enables distinctions
across tasks, eliminating the need for complex representation learning. Building
upon this insight, we propose a simple task representation extraction network
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(TREN), consisting of sequential convolutional blocks that directly extract task-
specific representations Z € R? from the latent features I“*, as expressed below:

Z = TREN(SG(I*F)), (1)

where SG(+) denotes the stop-gradient operator, which decouples the extraction
of latent features I”F" from the extraction of task representations Z, thereby
preventing potential interference between the two processes with distinct objec-
tives. The resulting extracted task representations Z are specific to each task,
as evidenced by the t-SNE visualization in Fig. 1.

Task-Adaptive Weight Generation. Task interference occurs when dif-
ferent tasks conflict in their update directions for the same weight parameters.
To address this, we propose generating task-specific parameters for each task.
Using the task-specific representation Z, we use multi-layer perceptrons (MLPs)
to estimate weight parameters for each decoding Transformer block. However,
traditional approaches that generate weights for linear layers or standard con-
volutions face scalability issues: their parameter counts grow quadratically with
channel dimension C (i.e., O(C?)), leading to computational inefficiency and
unreliable parameter estimation. To mitigate this, we shift focus to depth-wise
convolutions, a lightweight alternative with only &k x k x C parameters (where k
is the kernel size), scaling linearly with C (i.e., O(C)) since k < C. This choice
is motivated by two key advantages. First, depth-wise convolutions preserve lo-
cal spatial information while complementing global attention mechanisms—a
synergy shown to enhance performance in vision Transformers [24,23]. Second,
their parameter efficiency enables accurate and compact weight generation. Con-
sequently, our weight generation process can be formulated as follows:

W¢ = Reshape(MLP(Z)), (2)

where W& denotes the dynamically generated weight for depth-wise convolution,
which is obtained by first transforming Z through an MLP and then reshaping
it into the target kernel shape. Finally, the generated task-specific weight W&
is summed with the previously shared weight W*° as follows:

W =W+ \Ww¢, (3)

where W is the final weight of the depth-wise convolution and A is a learnable
parameter. By incorporating the generated task-specific weight into the Trans-
former block, we transform the original Transformer block [23] into a weight-
adaptive Transformer block (WATB), as illustrated in Fig. 1.

2.3 Task-Adaptive Loss Balancing Strategy

Existing All-in-One methods ignore the challenge of task imbalance, where differ-
ent tasks present varying learning difficulties, leading to some tasks dominating
while others remain undertrained. This concern has been addressed in the field
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of multi-task learning by using a loss balancing strategy [22] that dynamically
allocates task-specific weights during training. A common formulation is:

T
1
Loss = —L'+1 4
088 ;(203 + log 0v), (4)
where T denotes the total number of tasks. L' denotes the loss for the t-th
task. o; € R! is a learnable parameter. Here, # dynamically scales the loss

weight of each task, while log o; regularizes the scaling. When the loss L? is large
and tends to dominate the overall loss, o; increases to suppress its weight, and
vice versa. This mechanism autonomously balances task contributions, ensuring
equitable training without manual intervention. However, while effective for task-
level balancing, this approach lacks sample-level adaptability and struggles with
implementation in task-specific models. To address these limitations, we propose
a novel task-adaptive balancing strategy that achieves sample-level balancing by
redefining the derivation of o € R*:

1 A
Loss = ﬁLl(IHQ,IHQ)Jrloga, (5)

o = MLP(SG([L1 (1", 179), Ly (1"9, 179), L, (T9, 179)))), (6

where L;(-) denotes the L1 distance, and SG(-) denotes the stop gradient op-
eration that decouples loss balancing and model optimization. The three terms—
Ly(IFQ TH®) L,(I9, fHQ), and L (fHQ, TH@)—encodes sample-specific train-
ing dynamics. By feeding their concatenated values into an MLP, we estimate o
adaptively for each sample, enabling fine-grained balancing. While this strategy
shifts the derivation of o from task-index-conditioned (o; in Eq. 4) to sample-
loss-conditioned, the core mechanism—dynamic weighting via # and regular-
ization via log c—remains aligned with the original theory, ensuring autonomous
loss balancing while extending flexibility to the sample level.

3 Experiments and Results

3.1 Dataset

We utilize the dataset provided by the paper [21], which includes three dis-
tinct datasets from three different tasks: PET synthesis, CT denoising, and MRI
super-resolution. (1) The PET synthesis dataset consists of paired low-dose LQ
images, with a dose reduction factor of 12, and corresponding full-dose HQ im-
ages. Each image has a size of 400 x 92. The dataset includes 8,350 PET images
for training, 684 for validation, and 2,044 for testing. (2) The CT denoising
dataset consists of paired quarter-dose LQ images and corresponding standard-
dose HQ images. Each image has a size of 512 x 512. The dataset includes 2,039
CT images for training, 128 for validation, and 211 for testing. (3) The MRI
super-resolution dataset consists of paired 4x downsampled LQ images and cor-
responding HQ images. Each image has a size of 256 x 256. The dataset includes
40,500 MRI images for training, 5,828 for validation, and 11,400 for testing.
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Table 1. Task-specific medical image restoration results. The best results are bolded,
and the second-best results are underlined. * Denotes results that are significantly
different from the best results paired t-test at p < 0.05.

PET Synthesis Method CT Denoising Method MRI Super-Resolution
PSNRT SSIMT RMSE| PSNRT SSIMT RMSE| i PSNRT SSIMT RMSE]
Xiang’s [1] 35.93" 0.9167% 0.0980* | REDCNN [8] |[33.19" 0.9113% 8.9427* | DAGAN [13] | 30.55" 0.9189* 34.0866"
DCNN [2] 36.27 0.9243% 0.0954* EDCNN [9] 33.41% 0.9155" 8.7401* | SwinMR [14] | 30.93* 0.9253" 32.7339*
CycleWGAN [3]| 36.62° 0.9290* 0.0910* | Eformer [10] |33.35* 0.9175* 8.8030* | SDAUT [15] | 30.96* 0.9257* 32.5928"
ARGAN [4] |36.73* 0.9406* 0.0902* | CTformer [11] |33.25* 0.9134* 8.8974" | F-UNet [16] |31.26* 0.9314* 31.5675*
DRMC [5] 36.00" 0.9352* 0.0998* |DenoMamba [12]| 33.53* 0.9149* 8.6115* [MambalR [25]| 31.77* 0.9369* 29.8372*
TAT 37.31 0.9482 0.0851 TAT 33.78 0.9199 8.3799 TAT 32.13 0.9408 28.8921

Method

Table 2. All-in-One medical image restoration results.

Method PET Synthesis CT Denoising MRI Super-Resolution Avg.
PSNRT SSIMT RMSE||PSNRT SSIM{ RMSE||PSNRT SSIMf RMSE| |[PSNRT SSIMT RMSE|
ARGAN [4] [36.75" 0.9389" 0.0907" [ 32.92" 0.9111% 9.2110% | 30.08" 0.9083" 35.7999" | 33.25" 0.9194" 15.0339"
DenoMamba [12]{ 36.81 0.9367" 0.0895" | 33.18" 0.9115" 8.9512" | 30.32" 0.9091" 34.6972" | 33.44 0.9191" 14.5793"
MambalR [25] |37.17" 0.9458" 0.0864" | 33.50" 0.9165* 8.6345" | 31.31* 0.9305" 31.3150" | 33.99* 0.9309" 13.3453"
AirNet [17] 37.17° 0.9451" 0.0864" | 33.62" 0.9176* 8.5226™ | 31.39" 0.9316" 31.1141" | 34.06™ 0.9314" 13.2410"
AMIR [21] 37.12" 0.9475" 0.0876" | 33.70" 0.9182" 8.4520" | 32.03" 0.9396" 29.0988" | 34.28" 0.9351" 12.5461"
TAT 37.28 0.9480 0.0856 |33.80 0.9192 8.3642 |32.10 0.9402 28.9145 [34.39 0.9358 12.4548

Table 3. Ablation study results of TAT.

Method Params (M) PET Synthesis CT Denoising MRI Super-Resolution
PSNRt1 SSIMt RMSE] |[PSNRT SSIMT RMSE| |[PSNRT SSIMt RMSE]

TAT 41.69 37.28 0.9480 0.0856 |33.80 0.9192 8.3642 |32.10 0.9402 28.9145
w/o 26.12 37.16% 0.9472% 0.08717 | 33.64" 0.9181" 8.4845" | 31.85" 0.9374™ 29.7689"

Weight Generation|Generate All Params| 663.14 37.20" 0.9455" 0.0868" | 33.69" 0.9183" 8.4611" | 31.89* 0.9382* 29.5431"
w/o Stop Gradient 41.69 37.25 0.9469* 0.0860 |33.69* 0.9188" 8.4559* | 32.07* 0.9401 29.0291*
w/o 41.69 37.11° 0.9474% 0.0877% | 33.72* 0.9183" 8.4338" | 32.01* 0.9397" 29.1954*
Task-Level [22] 41.69 37.22° 0.9475" 0.0865" | 33.76" 0.9191 8.3845 | 32.05" 0.9398" 29.0858"

Loss Balancing

3.2 Implementation

For model architecture, the numbers of feature extraction blocks in TAT are
Ly =4, Ly = L3 = 6, and Ly = 8. The residual block number in TREN is
L = 2. The task-specific representation Z has a dimensionality of d = 256. For
model training, we use a total batch size of 12 (4 samples per dataset) and a
patch size of 128 x 128. The model is optimized using the AdamW optimizer with
a learning rate of 2 x 10™* trained for 4 x 10° iterations. For model evaluation,
the restoration performance is evaluated using PSNR, SSIM, and RMSE metrics.

3.3 Comparative Experiment

For task-specific MedIR, we compare TAT with five state-of-the-art (SOTA)
methods for each individual task. For All-in-One MedIR, we compare TAT with
five methods: two SOTA methods (AirNet [17] and AMIR [21]) designed for
All-in-One restoration, and three methods (ARGAN [4], DenoMamba [12], and
MambalR [25]) that perform the best in their respective specific tasks.

Task-Specific Medical Image Restoration. Although TAT is not specif-
ically designed for task-specific MedIR, it still achieves the best performance as
shown in Table. 1. This suggests that the two proposed task-adaptive strategies
are extensible and effective for individual tasks as well.
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Fig. 2. Visual comparisons on All-in-One medical image restoration.

All-in-One Medical Image Restoration. The results of All-in-One MedIR
are presented in Table. 2, where TAT significantly (p < 0.05) outperforms all
comparison methods across all three tasks. Especially, it outperforms AMIR
which is the current SOTA method in All-in-One MedIR. This is because TAT
best deals with the inter-task relationships of task interference and task imbal-
ance. In fact, our proposed TAT even achieves a comparable performance to
task-specific models present in Table. 1. This indicates that TAT has strong
model capacity and adaptability to deal with diverse tasks. The visual compar-
isons in Fig. 2 further highlight TAT’s superior ability to consistently restore
finer structures and details of images across different tasks.

3.4 Ablation Study

We conduct comprehensive ablation studies by systematically removing or mod-
ifying individual components. The experimental results are summarized in Ta-
ble. 3. For the task-adaptive weight generation, we introduce model variants: (1)
without the weight generation strategy, (2) with the generation of all parame-
ters in the Transformer block, and (3) without the stop-gradient operation. All
variants exhibit consistent performance degradation, highlighting the validity of
our design choices. For the task-adaptive loss balancing strategy, we evaluate
two model variants: (1) without loss balancing and (2) with a conventional task-
level balancing strategy [22]. Both alternatives lead to significant performance
degradation, further validating the superiority of our loss balancing strategy.
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4 Conclusion

In this paper, we introduce a novel task-adaptive transformer (TAT) to address
the challenges of task interference and task imbalance in All-in-One medical im-
age restoration. To mitigate task interference, we propose a task-adaptive weight
generation strategy that produces task-specific weight parameters, thereby re-
ducing conflicts during weight updates. To tackle task imbalance, we introduce a
task-adaptive loss balancing strategy that dynamically adjusts the loss weights
according to the learning difficulty of each task, ensuring the most effective op-
timization path. Experimental results demonstrate that our approach achieves
state-of-the-art performance across different tasks. Considering that the two pro-
posed task-adaptive strategies of TAT are architecture-agnostic, we plan to ex-
plore applying them to more modern architectures [26,27,25] in future work.
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