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Abstract. Neural Architecture Search (NAS) has shown significant po-
tential in designing deep neural networks for medical image segmenta-
tion. However, even emerging training-free NAS frameworks often incur
substantial computational costs and lengthy search times. To address
the critical challenges of computational efficiency and architecture inter-
pretability, the paper proposes a compact training-free NAS framework
based on an Alternating Evolution Game (AEG-cTFNAS). The proposed
method alternates the search and contribution evaluation of the encoder
and decoder within the UNet architecture via alternating games. It em-
ploys a truncated normal distribution for compact encoding, sampling,
and updating to minimize computational overhead, while Bayesian in-
ference is utilized to estimate the contribution of each block, adaptively
adjusting the search strategy and facilitating process visualization. Ex-
perimental results on two benchmark datasets reveal that AEG-cTFNAS
outperforms both manually designed architectures and NAS-based algo-
rithms, underscoring its efficacy and potential on medical image segmen-
tation. Code is available at https://github.com/spcity/AEG-cTFNAS.

Keywords: Alternating game · Training-free Neural Architecture Search
· Evolutionary optimization · Medical Image Segmentation

1 Introduction

Accurate medical image segmentation is a cornerstone of modern clinical work-
flows, providing critical quantitative information for diagnosis, treatment plan-
ning, and longitudinal disease monitoring [10]. Designing deep neural networks
for medical image segmentation necessitates a delicate balance between efficiency
and performance, a process traditionally reliant on expert experience [19, 24].

Neural architecture search (NAS) has emerged as a paradigm for automated
network design. While NAS can autonomously search for optimal architectures,
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traditional methods require validating each candidate, leading to high computa-
tional and time costs [5, 21]. Previous studies have focused on designing different
encoder or decoder architectures or enhancing segmentation accuracy through
special modules [21, 28]. Some studies also explore the impact of backbone net-
work topology and multi-scale fusion capabilities [13, 25]. However, few studies
have applied NAS to medical image tasks [20]. The training-free NAS (TFNAS)
estimates architecture performance via metrics, avoiding training and reducing
verification time [1]. Nonetheless, most methods still employ population-based
evolutionary algorithms (EAs), which are computationally demanding. The com-
plex impact of various modules on overall performance is not well integrated due
to high interpretability costs [23, 6]. The TFNAS primarily focuses on designing
better performance metrics as proxies for model accuracy or greatly utilizing
network structure information [8, 26]. The TFNAS is still not agile enough in
the clinical environment for pursuing rapid model development [22]. EAs with
probability distributions can achieve similar performance with lower costs [12].
Most UNet-based medical image segmentation studies focus on task efficiency,
neglecting the impact of modules. Research on module influence in architecture
search is limited. Consequently, reducing search costs while analyzing module
impacts to enhance performance and visualization remains a critical challenge.

The paper aims to reduce the search cost of EAs and better utilize neural
network components to improve efficiency and achieve process visualization. It
proposes using probability distributions for sampling and updating, reducing the
cost of evaluating numerous candidate architectures. The concept of alternating
game theory is introduced to progressively update parts of the network, lowering
costs and improving efficiency. Bayesian inference (BI) estimates module impacts
without extra evaluations, visualizing module contribution changes. To address
the challenge of varying target sizes inherent in medical images, the search space
for the encoder and decoder integrates multi-scale feature aggregation. This ca-
pability is vital for robustly segmenting diverse structures, from small tumors to
entire organs, within a single framework.

Based on the above ideas, the paper proposes an Alternating Evolution
Game-based compact Training-Free NAS (AEG-cTFNAS) method for medical
image segmentation, with the following key contributions: 1) Propose a trun-
cated normal distribution-based architecture sampling method using evolution-
ary algorithms, updating the probability distribution with only two evaluations
per iteration to reduce the search cost. 2) Propose an alternating game control
strategy that regulates the encoder-decoder search cadence based on their con-
tributions to enhance performance. 3) Propose a Bayesian inference approach
to estimate the impact of block modifications, facilitating dynamic strategy ad-
justments and real-time visualization of the search process.

2 Methodology

Fig. 1 shows the overall framework of AEG-cTFNAS. It employs an alternating
game framework with an evolutionary algorithm, encoding network architectures
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Fig. 1. Overview of our proposed AEG-cTFNAS. Compact encoding replaces
the original encoding with a truncated normal distribution T and uses CDF−1

T for
sampling. AGC controls the encoder-decoder pace and evaluates contributions. BI es-
timates block contributions to enhance the search strategy.

via probability distributions. BI then evaluates the impact of different modules,
enhancing search effectiveness and enabling visualization.

2.1 Alternating Evolution Game

Compact encoding and sampling The UNet consists of an encoder and
a decoder, each with NB blocks. The encoder block includes Normal Cell and
Reduction Cell, while the decoder block contains Normal Cell and Upsample
Cell. In the search space A, the available operations are SN for Normal Cell, SR

for Reduction Cell, and SU for Upsample Cell.
The encoder block consists of NN operations from the Normal Cell space and

NR operations from the Reduction Cell space. The decoder block contains NN

operations from the Normal Cell space and NU operations from the Upsample
Cell space. The genotype is Xb′ = [xo

1, x
s
1, . . . , x

o
NN

, xs
NN

, xo
NN+1, . . . , x

o
NN+NR

],
where xo

i ranges from 1 to SN and xs
i indicates the connection of operation xo

i ,
with its range from 0 to i (i < NN ). NR operations are performed in parallel. The
design for multi-scale feature processing is crucial for capturing both fine-grained
local details and broader global context. The first NN×2 dimensions and the last
NR dimensions of Xb′ are each modeled using the truncated normal distribution
xc
i ∼ T (µi, σ

2
i ). In the first NN ×2 dimensions, pairs of dimensions are combined

as xc
i , while each dimension in the last NR dimensions is represented by xc

i . For
the i-th dimension of the compact genotype xc

i , sampling is based on the inverse
of the cumulative distribution function CDF−1

T , and the equation is

xc
i =

√
2σi erf−1

[
−erf

(
µi + 1√

2σi

)
− y erf

(
µi − 1√

2σi

)]
+ y erf

(
µi + 1√

2σi

)
+ µi, (1)

where y is a random number uniformly distributed in the range [0, 1], erf is the
error function, erf−1 is the inverse of the error function. The range of values for
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xc
i generated by the Eq. 1 is [−1, 1], which needs to be mapped to the range

of xi. After mapping, for xi (i < NN × 2), the value range is [0, SN × i], for
xi (i ≥ NN × 2), the value range is [0, SR]. Thus, the encoding for a block is
Xb = [x1, x2, . . . , xNN

, xNN+1, . . . , xNN+NR
]. Finally, the compact encoding for

the entire network architecture is obtained by concatenating the encodings of all
blocks in the encoder and decoder, represented as X.

Alternating Game Control In Fig. 1, AGC controls the alternating updates
of the decoder and encoder. The network is encoded as a compact genotype
X = [XE , XD] = [Xb,E

1 , . . . , Xb,E
NB

, Xb,D
NB+1, . . . , X

b,D
NB+NB

], where Xb,E
1 , the first

encoder block, has the same shape as Xb, and Xb,D
NB+NB

denotes the NB-th de-
coder block. The alternating interval M is set, and the initial compact genotype
is X. If the encoder is searched and updated first, the decoder XD is not sam-
pled, and X is updated to X+E . Once the iteration count exceeds M , the search
and update switch to the decoder, with XE sampling stopping and X being up-
dated to X+D. To assess the contributions, a joint update X+E+D is generated.
The individual contributions of the encoder and decoder updates are

CE = sign[f(X)−f(X+E+D)]×[f(X)−f(X+E)]
f(X)−f(X+E+D)

,

CD = sign[f(X)−f(X+E+D)]×[f(X)−f(X+D)]
f(X)−f(X+E+D)

.
(2)

Let f(·) be the objective function for the minimization problem, which can be
either single-objective or multi-objective. To allow for more flexible alternating
control, if CE or CD contributes positively for two consecutive iterations, M
will increase by 1, up to a maximum of 1.5M ; if negative contributions occur
consecutively, M will decrease by 1, down to a minimum of 0.5M .

2.2 Contribution inference for search strategy

Bayesian Inference The paper examines the encoder and decoder’s influence
on overall optimization and provides a detailed analysis of block-level contri-
bution changes. Given that traditional methods like Shapley value calculations
are inefficient for many blocks, the paper leverages BI to estimate each block’s
contribution by combining encoder and decoder effects.

As shown in Fig. 1, for the i-th block in the encoder, the truncated nor-
mal distributions of the entire block are treated as an independent joint dis-
tribution. The Wasserstein distance di between the probability distributions
at iterations T and T + 1 can be calculated. Then, a BI dataset DataE =
[dT−W+1, ..., dT , dT+1] is constructed, where W controls the amount of data re-
tained, and dT+1 = [d1, ..., di, ..., dNB

, CT+1
E ]. Similarly, the dataset for the de-

coder is DataD = [pT−W+1, ..., pT , pT+1], and pT+1 = [p1, ..., pi, ..., pNB
, CT+1

D ].
Based on the constructed data, a logistic regression model can be used to es-
tablish the relationship between the first NB dimensions of input and the last
dimension of the response. The model maps the input to the response proba-
bility using log p(y|X,β) =

∑W
i=1 [yi log σ(zi) + (1− yi) log(1− σ(zi))], where zi
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represents the linear part of the logistic regression model, and β denotes the set
of coefficients for the input dimensions in zi.

A normal prior is imposed on β, and Bayes theorem combines likelihood
and before forming the posterior. Since the posterior is often intractable, and
assuming it is Gaussian, the paper applies the Laplace approximation at the
maximum posterior (MAP) point β̂, approximating the posterior as a Gaus-
sian: p(β|DataE) ≈ N

(
β̂, H−1

)
. This method requires solving the MAP esti-

mate once, which is efficient when the posterior is approximately Gaussian. Ul-
timately, the contribution of each block in the encoder can be obtained as Cb

E =
[Cb

E,1, ..., C
b
E,i, ..., C

b
E,NB

]. Similarly, for decoder, Cb
D = [Cb

D,1, ..., C
b
D,i, ..., C

b
D,NB

].
Finally, the contributions of all blocks are represented as Cb = [Cb

E , C
b
D].

Contribution inference-based search To better leverage the superior ar-
chitectures during the search process, the paper constructs a historical optimal
list Bestpool = [X∗

1 , ..., X
∗
K , X∗

eq] under the compact encoding, which includes K
historical optimal encodings and an average encoding X∗

eq = 1
K

∑K
i X∗

i . Based
on the inferred contributions, the following search strategy is constructed.

Xt+1 = XBest
r + VcrC

b
v(X

t −Xt
µ) + CED(XBest

r −Xt) (3)

XBest
r is a historical optimal architecture randomly selected from Bestpool

with equal probability, and Vcr is a 0-1 vector based on the crossover probabil-
ity cr, matching the shape of XBest

r . The Cb is extended to the corresponding
compact encoded vector Cb

v. Xt
µ is the compact architecture encoding obtained

by mapping the mean µ, and CED extends the contributions of the encoder and
decoder (CE and CD) to the compact encoded vectors. Xt is generated by Eq. 1.

The objective function compares f(Xt+1) and f(X∗
1 ) to select a winner

and a loser, which update each dimension of T as: µt+1 = µt + winner−loser
Np ,

σt+1 =
√
(σt)2 + (µt)2 − (µt+1)2 + winner2−loser2

Np , where Np is the size of the
virtual population. Unlike traditional evolutionary algorithms with a population
size NP require NG×NP evaluations over NG iterations, AEG-cTFNAS performs
only two evaluations per iteration (i.e., f(Xt+1) and either f(X+E) or f(X+D)),
totaling 2NG evaluations.

3 Experiments and Results

3.1 Experimental Settings and Details

The performance of AEG-cTFNAS was evaluated on two medical image seg-
mentation benchmarks: the Automatic Cardiac Diagnosis Challenge (ACDC)
dataset, from the MICCAI 2017 challenge, the partition follows TransUNet [3,
4], and the Endovis 2018 dataset from the MICCAI Robot Scene Segmenta-
tion Challenge, consisting of 15 training and 4 inference videos [7]. Experiments
were conducted using Pytorch 1.13.0 on a single NVIDIA RTX 4090 GPU with
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24GB of memory for architecture searching, training, and testing. AEG-cTFNAS
searched for 50 iterations on each dataset, with the block (NB) being 4. For
ACDC, the input size was 224× 224, trained with the AdamW optimizer (learn-
ing rate 1e− 4) for up to 400 epochs (batch size 12). For Endovis 2018, training
was done for 200 epochs (batch size 4) at a resolution of 640× 640 and learning
rate 1e− 4. FLOPs, jacob_cov, and synflow were used as the search optimiza-
tion functions [20]. The loss function combines DICE and cross-entropy loss.

3.2 Comparison with State-of-the-art Methods

Evaluation on ACDC The section compares 10 manually designed networks
(MN) and 3 NAS-based automatically designed networks (AN), with the results
summarized in Table 1. The organs include the left ventricle (LV), right ventri-
cle (RV), and myocardium (Myo). Our proposed AEG-CTFNAS achieves a new
state-of-the-art (SOTA) mean Dice score of 91.72% on the ACDC dataset, with
only 3.34M parameters and 7.79G FLOPs. This represents a 0.43% improve-
ment over the previous SOTA EMCAD (91.29% Dice), especially on LV and
Myo. Among NAS-based methods, AEG-cTFNAS outperforms NASUNet, Med-
NAS(a) (using MOEAD), and MedNAS(b) (using NSGA-II) by about 9.16%,
1.82%, 2.74%. The AEG-cTFNAS requires fewer search iterations than MedNAS.
So, AEG-cTFNAS surpasses MNs and outperforms other NAS-based methods
with a lower search cost, achieving SOTA performance. In terms of runtime, NA-
SUNet takes 18441 seconds. With training-free metrics, MedNAS (using NSGA-
II) finishes in 3183.96 seconds, while AEG-cTFNAS requires only 369.76 seconds.

Table 1. Results of cardiac organ segmentation on ACDC dataset. The ↑ / ↓ denotes
the higher (lower) the better. The best scores are shown in bold.

Architectures FLOPs Params DICE(%)↑
(G) (M) LV RV Myo Ave

MN

UNet [16] 1.96 1.08 93.16 82.36 81.73 85.75
R50 UNet [15] 4.06 25.55 94.92 87.10 80.63 87.55
DenseNet [9] 116.19 7.55 95.99 87.69 89.59 91.09
Att-UNet [11] 50.97 34.88 93.47 87.58 79.20 86.75
TransUNet [3] 19.70 90.44 95.18 86.67 87.27 91.05

TransCASCADE [14] - 123.48 95.48 89.30 89.07 91.28
SwinUNet [2] 8.71 41.34 94.85 88.60 87.28 90.24
MT-UNet [18] 44.79 75.07 95.62 86.64 89.04 90.43
EMCAD [15] 4.29 26.77 95.22 89.49 89.15 91.29
VM-UNet [17] 3.54 15.48 95.65 89.01 88.80 91.15

AN

NASUNet [21] 0.82 0.16 90.92 77.40 79.37 82.56
MedNAS(a) [20] 5.18 1.77 95.05 86.63 88.01 89.90
MedNAS(b) [20] 5.48 2.11 94.83 85.26 86.85 88.98

AEG-cTFNAS(Ours) 7.79 3.34 96.04 89.33 89.80 91.72
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Fig. 2. Qualitative results of segmentation on ACDC and Endovis 2018.

Evaluation on Endovis 2018 In medical image segmentation, the ACDC
dataset contains only three tissues in balanced proportions, while the EndoVis
2018 dataset includes multiple similar instruments in a complex background
that can lead to confusion and imbalance. We compare 9 MNs and 2 ANs on the
EndoVis 2018 dataset. In Table 2, AEG-cTFNAS demonstrates excellent IoU
performance on some MNs, outperforming other NAS-based methods. However,
compared with the networks designed specifically for surgical tool segmentation
(ISINet and SurgicalSAM), the effect is inferior, not reaching SOTA. In Fig. 2,
AEG-cTFNAS excels in capturing fine structures on pure tissue segmentation
but is less effective in distinguishing categories on surgical tool segmentation with
class-imbalance. In contrast, SurgicalSAM achieves accurate class prompts using
a prototype-based class prompt encoder and contrastive prototype learning.

Table 2. Comparison results for surgical tool segmentation on the Endovis 2018
dataset. The best scores are shown in bold. The metrics include intersection over
union (IoU) and mean class IoU (mc IoU) for Bipolar Forceps (BF), Prograsp Forceps
(PF), Large Needle Driver (LND), Monopolar Curved Scissors (MCS), Ultrasound
Probe (UP), Suction Instrument (SI), and Clip Applier (CA).

Architectures IoU↑ Instrument Categories mc IoU↑
(%) BF PF LND MCS UP SI CA (%)

MN

UNet [16] 26.81 55.96 5.51 1.01 56.44 0.07 0.00 0.00 17.00
DenseNet [9] 28.44 57.06 4.92 0.02 62.50 0.26 5.41 0.00 18.60

PVTCASCADE [14] 29.86 59.71 5.91 4.18 65.17 0.52 5.96 0.00 19.48
EMCAD [15] 31.95 72.26 9.00 0.74 67.81 0.00 7.41 0.14 22.48

ISINet [7] 70.94 73.83 48.61 30.98 88.16 2.16 37.68 0.00 40.21
SurgicalSAM [27] 80.33 83.66 65.63 58.75 88.56 21.23 54.48 39.78 58.87

AN

NASUNet [21] 29.90 60.05 4.63 3.51 62.74 0.09 7.38 0.20 19.80
MedNAS [20] 30.64 65.38 5.70 3.75 3.67 0.18 8.99 0.18 21.12

Ours 32.70 71.87 8.60 0.89 67.21 0.37 7.76 0.91 22.52

3.3 Ablation Study

The section presents the ablation study of AEG-cTFNAS on the ACDC dataset
(Table 3), evaluating the contribution of each module, where ASD denotes Av-
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erage surface distance. Baseline 1 uses a standard evolutionary algorithm for
TFNAS-based segmentation. Baseline 2 replaces the population with a proba-
bility distribution. The score is poor, but it reduces the search time. Baseline 3
further integrates the AGC module for an alternating evolutionary game, while
Baseline 4 incorporates BI into compact encoding. Results indicate that the AGC
module improves segmentation performance, with BI delivering similar benefits.
Every component demonstrates its capabilities in AEG-cTFNAS. Overall, AEG-
cTFNAS achieves the best segmentation performance.

Table 3. Ablation study based on different components on ACDC dataset.

Methods Components mIoU ↑ ASD ↓ DICE(%) ↑ HD95
Compact AGC BI (%) (mm) LV RV Myo Ave (mm)

Baseline 1 No No No 82.35 3.83 95.05 86.63 88.01 89.90 1.54
Baseline 2 Yes No No 74.29 5.16 91.90 78.13 81.27 83.77 2.05
Baseline 3 Yes Yes No 77.74 4.27 92.97 84.74 82.98 86.89 1.79
Baseline 4 Yes No Yes 79.94 5.37 93.71 85.52 85.51 88.25 2.2

AEG-cTFNAS Yes Yes Yes 85.16 3.50 96.04 89.33 89.80 91.72 1.52

3.4 Visualization of the Search Process

Fig. 3 visualizes the search process, illustrating the actual contributions of the
encoder and decoder and the variations in the estimated contributions of dif-
ferent blocks. The estimated block contributions in the decoder align with the
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Fig. 3. Visualization of dynamic module contributions during search (M = 5).

actual evaluations, indicating that block updates negatively affect the decoder
and reduce its overall contribution. In contrast, after the 5th iteration, encoder
blocks contribute positively, leading to a positive overall contribution.

4 Conclusion

The paper proposes AEG-cTFNAS, a novel TFNAS for efficiently generating net-
work architectures tailored to medical image segmentation, addressing the criti-
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cal barriers of high search cost and low transparency that hinder the widespread
adoption in clinical practice. For the first time, a truncated normal distribution
is used to encode neural architectures, replacing population-based evolutionary
algorithms to reduce search costs. The alternating evolutionary game framework
is proposed to adjust the search process based on the contributions of different
modules. BI-based module contribution estimation is crucial for precise segmen-
tation, incurs no extra cost, and enables real-time visualization of the search. Ex-
periment results demonstrate that AEG-cTFNAS achieves SOTA performance
on the ACDC dataset, although further improvements are needed for challeng-
ing surgical tool segmentation tasks. Future work will extend AEG-cTFNAS by
incorporating inter-class contrastive learning to enhance generalizability across
diverse datasets.
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