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Abstract. Microscopic hyperspectral image segmentation faces dual chal-
lenges of limited labeled data and insu�cient utilization of unlabeled
data. However, existing semi-supervised methods often isolate the train-
ing processes for labeled and unlabeled data, neglecting their poten-
tial synergistic e�ects. To address this, we propose a semi-supervised
method based on Virtual Domain Collaborative Learning (VDCL) to
enhance the collaborative learning ability between labeled and unlabeled
data and improve the quality of pseudo-labels. Speci�cally, by combining
unlabeled background with labeled foreground and labeled background
with unlabeled foreground to construct virtual domain data pairs, we
established a collaborative learning bridge between labeled and unla-
beled samples. Furthermore, we establish a repository of optimal models
and employ an alternating co-training strategy. The current and histor-
ically optimal models jointly guide training, and this dynamic frame-
work signi�cantly improves pseudo-labels quality. We have veri�ed the
novel semi-supervised segmentation method on the widely-used pub-
lic microscopic hyperspectral choledoch dataset from Kaggle and the
oral squamous cell carcinoma dataset. On these datasets, our method
has achieved the state-of-the-art performance. The code is available at
https://github.com/Qugeryolo/Virual-Domain.

Keywords: Virtual domain · Alternate learning · Hyperspectral image
· Semi-supervised segmentation.

1 Introduction

Microscopic hyperspectral imaging (MHSI) has emerged as a promising modality
in medical diagnostics [1�3], combining the high spatial resolution of traditional
microscopy with rich spectral information that captures subtle biochemical vari-
ations in tissues [4, 5]. This unique ability to provide detailed molecular and
structural insights has positioned HSI as a transformative tool for applications
such as disease diagnosis, tumor margin delineation, and pathological assess-
ment [6�8]. Despite its potential, the adoption of MHSI in clinical practice faces
signi�cant challenges, particularly in the domain of MHSI segmentation.
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A critical bottleneck in developing accurate and robust segmentation models
lies in the requirement for large volumes of annotated data [9�11]. Manual label-
ing of MHSI is labor-intensive, time-consuming, and requires domain expertise,
especially given the high dimensionality and complexity of HSI data [7, 8, 24].
Consequently, the scarcity of labeled datasets signi�cantly limits the scalability
and performance of fully supervised segmentation methods.

To alleviate the reliance on extensive labeled data, semi-supervised learn-
ing (SSL) has gained traction as a promising alternative. Existing research falls
into three categories: (1) methods based on weak-to-strong consistency, where
pseudo-labels are generated from weak perturbations and used to supervise pre-
dictions from strongly perturbed inputs [12�14]; (2) the Exponential Moving
Average (EMA) teacher-based framework for semi-supervised segmentation [15,
16, 18], where a teacher network is derived from the EMA of the student model's
weights; and (3) co-training paradigms [19, 20], which involve training multiple
networks with di�erent initializations in a mutually instructive manner. However,
these methods still face two main limitations: (1) Existing enhancement meth-
ods, such as CutMix [26] and ClassMix [27], treat labeled and unlabeled data
as isolated streams, but ignore the potential collaborative associations between
labeled and unlabeled data. (2) The process of generating and re�ning pseudo-
labels, which is crucial for e�ectively leveraging unlabeled data, frequently su�ers
from a lack of robustness and adaptability. This shortcoming ultimately results
in suboptimal model performance.

To address these challenges, we propose a novel semi-supervised framework
for microscopic hyperspectral image segmentation based on Virtual Domain
Collaborative Learning (VDCL). There are three aspects to our contribution:
(1) We propose a virtual domain that bridges labeled and unlabeled data, en-
abling the seamless transfer of knowledge between the two. By creating virtual
and real data pairs, we facilitate the collaborative learning between annotated
and unannotated samples, enhancing their synergy. (2) We introduce an inno-
vative dynamic co-training framework, which exploits the historical memory of
optimal models. Two models iteratively re�ne pseudo-labels generation under
the alternating guidance of current and historical optimal models, enhancing
pseudo-labels quality and reliability. (3) Extensive experiments on two micro-
scopic hyperspectral datasets demonstrates that our method outperforms state-
of-the-art approaches.

2 Methodology

2.1 Overview

Fig. 1 illustrates the proposed framework based on Virtual Domain Collabora-
tive Learning (VDCL) for microscopic hyperspectral image segmentation. The
training process of this framework consists of two core components: (1) introduc-
ing virtual domains for e�ective knowledge transfer and collaborative learning,
bridging the gap between labeled and unlabeled data; (2) A dynamic alterna-
tive joint training framework is constructed to build a historical optimal model
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Fig. 1. The overview of our proposed VDCL.

repository, where the current model and the optimal model alternate to guide
pseudo-labels generation and improve the quality of pseudo-labels. With U-Net
[22] as the backbone for the co-training models, we detail the virtual domain col-
laborative learning and alternate co-training learning (ACTL) in the following
sub-sections.

2.2 Virtual Domain Collaborative Learning

The virtual domain co-training method proposed in this paper aims to enhance
the collaborative learning capability between labeled and unlabeled data. Specif-
ically, this method bridges the gap between labeled and unlabeled samples by
creating data pairs of virtual backgrounds and real annotated foregroundsHback

vir ,

as well as real backgrounds and virtual foregrounds Hfore
vir .

Hfore
vir =

[
Hback

labeled,H
fore
unlabeled

]
,Hback

vir =
[
Hfore

labeled,H
back
unlabeled

]
(1)

Based on the construction of these virtual domain data pairs, we can de�ne the
corresponding loss functions to measure the performance of the model on the
virtual domain. The following two loss functions, Lfore

vir and Lback
vir , are used to

guide the model to better learn the information from both labeled and unlabeled
data.

Lfore
vir = log

exp (xn, yn)∑C
c=1 exp (xn,c)

· 1 {yn ̸= foreground_index} (2)

Lback
vir = log

exp (xn, yn)∑C
c=1 exp (xn,c)

· 1 {yn ̸= background_index} (3)
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In this way, unlabeled data is not only used to generate pseudo-labels but
also collaborates with labeled data for co-learning, signi�cantly improving the
utilization of unlabeled data. This approach strengthens the model's learning
ability through the construction and mutual transformation of virtual data do-
mains, greatly enhancing the contribution of unlabeled data, especially in semi-
supervised learning tasks.

Lvir_con =
1

n

∑n
i=1

∥∥yi1 − yi2
∥∥2 (4)

where y1 and y2 denote the predictions for the virtual domain data from M1 and
M2, the two models employed in the co-training framework.

2.3 Alternate Co-training Learning

Generating and re�ning pseudo-labels is key to utilizing unlabeled data e�ec-
tively. To achieve this, we construct a repository of optimal models Mhist

2 based
on the DSC (Dice Similarity Coe�cient) metric. Models are selected for the
repository based on their performance, ensuring that the best-performing models
are used to guide the learning process. In this approach, M2 alternates between
being the current model M curr

2 and the historically optimal model Mhist
2 .

Mhist
2 = Repository ⟨M2|DSCcurrent > Best⟩update , (5)

M2 =

{
Mhist

2 , if epoch is odd

M curr
2 , if epoch is even

(6)

To prevent excessive coupling in model learning, we employ alternate co-training
between two models, with each guiding the other to re�ne pseudo-labels and
improve the overall learning process. This alternate loss is de�ned as:

Lalter = Lce (y1, y2) + Ldice (y1, y2) + Lce (y2, y1) + Ldice (y2, y1) (7)

where y1 and y2 are the pseudo-label predictions for the unlabeled data made
by M1 and M2, respectively. Lce denotes the cross-entropy loss, Ldice is the dice
loss.

2.4 Overall Objective

For labeled data, we integrate the Cross-entropy loss and Dice loss to oversee
the model training, which is denoted as Lsup. Regarding virtual domain data, we
calculate the virtual consistency loss Lvir_con along with the virtual supervision

losses Lfore
vir and Lback

vir . In the case of unlabeled data, we determine the alternate
learning loss Lalter. The total loss function Ltotal is then given by the formula:

α = e
−0.5∗

(
1− currunt_epoch

total_epoch

)2

, (8)

Ltotal = Lsup + α
(
Lfore
vir + Lback

vir + Lvir_con + Lalter

)
(9)
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Table 1. Comparisons with other methods on the MHC Dataset.

Method Publication Labeled/unlabeled DSC(%)↑ IoU(%)↑ HD(mm)↓ HD95(mm)↓
UAMT[16] [MICCAI'19]

20%/80%

61.73 45.57 44.72 11.86
SSASNet[17] [MICCAI'22] 63.33 47.18 41.19 10.20
Unimatch[14] [CVPR'23] 61.29 45.38 44.92 10.94
CPS[19] [CVPR'21] 62.97 47.54 42.88 11.64
DualTeacher[18] [NeurIPS'23] 61.57 45.40 42.39 11.20
ABD[21] [CVPR'24] 61.51 45.89 43.64 12.69
VDCL - 64.61 48.92 39.74 9.97

UAMT[16] [MICCAI'19]

10%/90%

60.31 44.02 43.48 12.74
SSASNet[17] [MICCAI'22] 60.93 45.01 44.88 13.59
Unimatch[14] [CVPR'23] 58.12 42.12 43.13 13.49
CPS[19] [CVPR'21] 61.13 45.45 43.04 12.90
DualTeacher[18] [NeurIPS'23] 58.09 41.69 43.85 13.32
ABD[21] [CVPR'24] 60.50 44.46 43.05 12.41
VDCL - 62.20 46.33 42.82 12.22

UAMT[16] [MICCAI'19]

5%/95%

59.95 43.78 44.20 13.74
SSASNet[17] [MICCAI'22] 58.91 42.58 43.75 13.83
Unimatch[14] [CVPR'23] 57.36 41.12 43.29 13.33
CPS[19] [CVPR'21] 57.30 42.81 44.13 13.49
DualTeacher[18] [NeurIPS'23] 53.23 37.12 45.52 14.32
ABD[21] [CVPR'24] 59.88 43.74 43.08 12.96
VDCL - 61.21 45.38 42.56 12.88

As a weight factor, α balances di�erent loss terms. This allows the model to bet-
ter utilize information from the virtual domain and unlabeled data, and adapting
to training stages.

3 Experiments

3.1 Datasets & Implementation Details

Datasets and evaluation metrics. In this study, experiments are conducted
on two datasets: the public Microscopic Hyperspectral Choledoch (MHC) Dataset
[24] from Kaggle and the Oral Squamous Cell Carcinoma (OSCC) [7] Dataset.
The MHC dataset has 325 scenes with 60 spectral bands in 550-1000 nm and
1280Ö1024 pixel images (260 for training, 65 for testing). The OSCC dataset
includes data from 72 patients, with each scene at 696Ö520Ö60 resolution and
400-1000 nm wavelength range (58 for training, 14 for testing). To comprehen-
sively evaluate performance, four metrics are used: Dice similarity coe�cient
(DSC), Intersection over Union (IoU), Hausdor� distance (HD), and 95% Haus-
dor� distance (HD95), widely applied in medical image segmentation. DSC is
the main metric, with IoU, HD, and HD95 as supplementary ones.

Implementation details. The network in this study is implemented with Py-
torch 1.13.0 and CUDA 11.7 on two NVIDIA GeForce RTX3090 24G GPUs.
For MHC and OSCC datasets, each original image is divided into 256Ö256Ö60
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Table 2. Comparisons with other methods on the OSCC Dataset.

Method Publication Labeled/unlabeled DSC(%)↑ IoU(%)↑ HD(mm)↓ HD95(mm)↓
UAMT[16] [MICCAI'19]

20%/80%

80.35 68.42 33.63 7.73
SSASNet[17] [MICCAI'22] 80.24 68.60 32.82 6.09
Unimatch[14] [CVPR'23] 79.69 67.59 33.69 7.23
CPS[19] [CVPR'21] 81.36 69.58 32.52 6.55
DualTeacher[18] [NeurIPS'23] 80.72 69.06 33.62 6.42
ABD[21] [CVPR'24] 81.48 69.88 34.08 7.18
VDCL - 82.15 71.02 31.95 5.51

UAMT[16] [MICCAI'19]

10%/90%

78.38 65.50 33.65 6.95
SSASNet[17] [MICCAI'22] 78.84 66.23 35.13 6.66
Unimatch[14] [CVPR'23] 78.36 65.74 34.08 7.81
CPS[19] [CVPR'21] 79.39 67.08 33.97 7.88
DualTeacher[18] [NeurIPS'23] 79.30 67.26 34.37 6.79
ABD[21] [CVPR'24] 79.84 67.26 34.26 6.58
VDCL - 81.38 70.01 33.63 5.66

UAMT[16] [MICCAI'19]

5%/95%

75.34 62.13 36.21 7.45
SSASNet[17] [MICCAI'22] 76.65 63.67 34.94 7.41
Unimatch[14] [CVPR'23] 74.82 61.57 35.33 7.08
CPS[19] [CVPR'21] 76.84 64.23 35.65 8.44
DualTeacher[18] [NeurIPS'23] 75.53 62.36 35.18 7.83
ABD[21] [CVPR'24] 78.05 65.58 34.88 6.54
VDCL � 80.45 68.90 34.74 5.91

image cubes. Training parameters are: SGD optimizer (momentum 0.99, weight
decay 0.0005), batch size 4, 150 epochs, and initial learning rate 0.0001. To en-
sure fairness, following prior work [23, 25], we use 5%, 10%, and 20% labeled
data for model training.

3.2 Comparison Study

Performance on MHC Dataset. As shown in Table 1, we have compared
our proposed VDCL method with other existing semi-supervised learning (SSL)
methods. The methods are presented under di�erent labeled/unlabeled data
ratios, which mimic various realistic scenarios. It can be observed that our VDCL
method outperforms the other methods in most cases. For example, when the
labeled/unlabeled ratio is 20%/80%, VDCL achieves a DSC of 64.61%, which is
higher than the best result (63.33% by SSASNet) among the other methods.

Performance on OSCC Dataset. Table 2 presents the comparative results of
our proposed VDCL method and other semi-supervised learning (SSL) methods
on the OSCC dataset. The methods are evaluated under di�erent labeled/unlabe-
led data ratios. It can be seen that our VDCL method outperforms other meth-
ods. For example, when the labeled/unlabeled ratio is 20%/80%, VDCL reaches a
DSC of 82.15%, IoU of 71.02%, HD of 31.95mm, and HD95 of 5.51mm, which are
all better than the best results of other methods. Overall, our VDCL method
demonstrates its e�ectiveness and superiority in handling the semi-supervised
learning task on this dataset.
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Fig. 2. Visual comparison of segmentation results on two datasets.

Visualization. In Fig. 2, green regions represent accurate cancer area predic-
tions, red regions indicate false positives, and yellow regions signify missed cancer
areas. Evidently, our proposed method yields more accurate segmentation masks
for cancerous regions than other methods. The segmented boundaries obtained
by our approach are sharper on the MHC and OSCC datasets, minimizing false
positives and missed cancer areas.

3.3 Ablation Study

Ablation Study of VDAL and ACTL. In this section, we assess the e�ec-
tiveness of the proposed VDAL and ACTL on the MHC and OSCC datasets. As
shown in Table 3, on the MHC dataset with a 20%/80% labeled/unlabeled ra-
tio, the DSC increases from 61.56% to 63.97%. The combined use of VDAL and
ACTL results in the best performance, with a DSC of 64.61%, indicating that the
two components complement each other. Similarly, on the OSCC dataset with
a 20%/80% labeled/unlabeled ratio, VDAL alone boosts the DSC from 80.72%
to 81.85%, and ACTL alone increases it to 81.06%. When used together, VDAL
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Table 3. Ablation study of our proposed VDAL and ACTL.

Dataset labeled/unlabeled VDAL ACTL DSC(%)↑ IoU(%)↑ HD(mm)↓ HD95(mm)↓

MHC 20%/80%

- - 61.56 45.40 42.39 11.20
✓ - 63.97 48.32 41.42 10.76
- ✓ 63.57 47.99 41.98 11.74
✓ ✓ 64.61 48.92 39.74 9.97

OSCC 20%/80%

- - 80.72 69.06 33.62 6.42
✓ - 81.85 70.74 32.93 6.78
- ✓ 81.06 69.82 33.88 7.12
✓ ✓ 82.15 71.02 31.95 5.51

Table 4. Ablation study of di�erent paradigms.

Dataset labeled/unlabeled Paradigm DSC(%)↑ IoU(%)↑ HD(mm)↓ HD95(mm)↓

MHC 20%/80%
EMA 63.12 47.66 42.50 11.68

Co-training 64.61 48.92 39.74 9.97

OSCC 20%/80%
EMA 81.39 70.30 32.49 6.26

Co-training 82.15 71.02 31.95 5.51

and ACTL achieve the highest DSC of 82.15%, along with improved IoU, HD,
and HD95 values.

Ablation Study of Di�erent Paradigms. We conduct an ablation study on
the MHC and OSCC datasets to assess the EMA and Co-training paradigms. For
the MHC dataset with a 20%/80% labeled/unlabeled ratio, Co-training achieves
a DSC of 64.61% while EMA gets 63.12%. On the OSCC dataset at the same
ratio, Co-training attains a DSC of 82.15% compared to EMA's 81.39%. The
other metrics exhibit consistent trends, showing that Co-training is more e�ective
in semi-supervised learning for these datasets.

4 Conclusion

In this paper, we propose a semi-supervised method based on Virtual Domain
Collaborative Learning (VDCL). It leverages a historical memory of optimal su-
pervision framework where two co-training models generate optimized pseudo-
labels to enhance unlabeled data utilization. By creating speci�c data pairs of
virtual and real backgrounds/foregrounds, we enable collaborative learning be-
tween labeled and unlabeled samples. Additionally, with a repository of optimal
adversarial models and an alternating training approach, the current and histor-
ically optimal models jointly guide the training, improving pseudo-label quality.
Extensive experiments on two datasets show that our VDCL-based method is
superior to previous methods, indicating its great potential in this domain.
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