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Abstract. Functional magnetic resonance imaging (fMRI), a noninva-
sive neuroimaging technique for mapping neural activity, has demon-
strated substantial potential in identifying brain disease. However, clini-
cal applications face a critical challenge: patient data are typically scarce
compared to abundant healthy control samples. This severe class im-
balance significantly limits the performance of classification-based di-
agnostic models. To address this issue, we propose the Region-Specific
Anomaly Detection (RSAD) framework, which formulates the brain dis-
ease identification as an anomaly detection task. We first employ pre-
training to capture normal patterns of healthy data through a recon-
struction task, and then develop the discrepancy score to enhance the
model’s ability to perceive potential abnormalities, thereby improving
the AD performance. Specifically, we design an affinity matrix learning
module and an adaptive region of interest (ROI) masking strategy to
improve the performance of signal representation learning. Additionally,
we propose a region-based discrepancy score weighting strategy to am-
plify the distinction between potential abnormalities and healthy controls
by assigning higher weights to key brain regions, thereby improving the
model’s ability to detect anomalies. We conduct experiments across six
different brain diseases, and the superior results demonstrate that RSAD
effectively enables disease diagnosis, even with extreme class imbalance.
Our code is available at https://github.com/kylin1112/RSAD.

Keywords: Anomaly detection · Self-supervised learning · rs-fMRI ·
Brain disease diagnosis.

1 Introduction

The increasing prevalence of brain diseases, such as depression [14] and demen-
tia [16], significantly impacts both individual well-being and societal progress.
Accurate screening and diagnosis are essential to enable effective interventions
and equitable healthcare. Functional magnetic resonance imaging (fMRI), which
measures blood-oxygen-level-dependent (BOLD) signals to reflect neural activ-
ity across brain regions, has emerged as an invaluable tool for diagnosing neu-
rological and psychiatric conditions [11,26,4,5,6]. Most fMRI-based diagnostic
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frameworks treat brain disease identification as a classification task, while facing
two major challenges. First, task-specific models exhibit limited generalizability,
typically focusing on a single disease, whereas clinical practice involves diverse
brain diseases that such models cannot comprehensively address. Second, these
models are hindered by a pronounced class imbalance. In practical scenarios,
the number of healthy control samples frequently exceeds that of patient cases,
further compromising the model’s diagnostic performance [23,24].

Analogous to a clinician using knowledge of healthy individuals to detect pre-
viously unnoticed abnormalities, anomaly detection (AD) models normal data
patterns to identify rare instances of abnormality, providing a promising solution
to these challenges. A general AD pipeline first learns to reconstruct normal sam-
ples and then detects potential anomalies by evaluating discrepancies between
the input and its reconstruction. This approach has achieved substantial success
in fields such as computer vision [25,10] and time series analysis [21,8]. Among
these methods, autoencoders [18] and generative adversarial networks [10] are
commonly utilized to capture a compact latent space that reflects the normal
data distribution.

However, the existing AD-based approaches in clinical scenario face three
challenges. First, existing AD methods in medical imaging are mostly tailored
for 3D data (e.g., T1-weighted MRI [9] and CT scans [7]), whereas fMRI data
inherently possess 4D spatiotemporal complexity, hindering the direct adapta-
tion of conventional AD methodologies. Second, it is difficult to optimize the
latent space of fMRI data simply by sequence reconstruction, due to the high
noise and low information characteristic of BOLD signals. Third, existing meth-
ods typically employ reconstruction loss directly as the anomaly score, which
exhibits limited sensitivity to subtle variations, particularly in conditions like
brain diseases that lack distinct morphological features.

To address the issues above, we introduce the Region-Specific Anomaly
Detection (RSAD) framework. Our main contributions are as follows: (1) We
propose the RSAD framework, which adapts fMRI-based disease diagnosis to
AD tasks and achieves disease diagnosis under extreme class imbalance. (2) We
design the affinity matrix learning module and the adaptive Region of interest
(ROI) masking strategy, capturing the relationships between brain regions and
significantly enhancing the masked autoencoder framework’s ability to represent
fMRI signals. (3) We introduce a region-specific discrepancy score weighting
strategy to amplify the distinctions between potential anomalies and normal
controls, thereby effectively improve the pre-trained model’s AD performance.
(4) Our approach is evaluated on six distinct brain diseases, and the experimental
results demonstrate its superiority over current SOTA methods.

2 Method

2.1 Problem Definition

We define the problem of disease identification as a task of AD. Consider an ROI-
wise fMRI BOLD signal x ∈ RN×T , where N represents the number of ROIs
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Fig. 1. The architecture of the region-specific anomaly detection (RSAD). RSAD con-
sists of two steps: signal representation learning and anomaly detection. The first step
involves the affinity matrix learning module and the adaptive ROI masking strategy.

defined by a brain atlas, and T denotes the number of time points in the fMRI
data. During the training phase, a set of fMRI signals from m healthy indi-
viduals, denoted as X = {x1,x2, . . . ,xm}, is used to train the RSAD model,
aiming to learn the distribution of healthy fMRI signals. In the AD phase,
the pre-trained model is employed to classify each individual in the test set
T = {x1,x2, . . . ,xj , . . . ,xj+k}, where the set includes fMRI data from j unseen
healthy individuals and k unseen patients, as either normal or abnormal. Our
problem is categorized as self-supervised AD, as no label information is utilized.

2.2 Representation Learning

In the first stage of the framework, the Transformer masked autoencoder serves
as the backbone architecture to model the signal distribution of the healthy con-
trol group through reconstruction tasks, aiming to learn its representation, as
illustrated in Fig. 1. The affinity matrix learning module captures the relation-
ships between brain regions, generates the affinity matrix, and determines brain
importance scores to guide adaptive ROI masking. This process prompts the
model to focus on the most representative brain regions of healthy individuals.

Affinity Matrix Learning. Fig. 1 illustrates the affinity matrix learning mod-
ule with a vision transformer serving as the affinity encoder, designed to capture
relationships between brain regions, inspired by Liu et al. [11]. The input to the
module is x ∈ RN×T , and it’s divided into two branches. First, the functional
connectivity (FC) matrix Fpear ∈ RN×N is computed using pearson correlation.
We then use the attention map generated by the affinity encoder during forward
propagation to represent the relative importance between brain regions [26]. The
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final attention matrix Fattn ∈ RN×N is obtained by averaging the attention maps
generated by each head in each layer of the affinity encoder. Notably, the ma-
trix is symmetric to ensure interpretability. Finally, by adding the FC matrix
Fpear and the attention matrix Fattn through the corresponding edges, we obtain
the affinity matrix Faffi ∈ RN×N . This learnable affinity matrix represents the
relative relationships between different brain regions in healthy controls.

Adaptive ROI Masking. Random masking has demonstrated considerable
success in the context of masked autoencoder, particularly in computer vision
tasks. However, its effectiveness in fMRI is not straightforward. Different brain
regions have distinct functional roles, and random masking may hinder the
model’s ability to accurately capture the critical brain regions or networks es-
sential for the healthy distribution of fMRI signals.

To address this issue, we propose an adaptive ROI masking strategy. Specif-
ically, based on the affinity matrix generated by the affinity matrix learning
module, we quantify the importance of each ROI by calculating αt ∈ RN , as
shown in the following equation:

αt(j) =

∑N
i=1 Faffi(i, j)∑N

i=1

∑N
j=1 Faffi(i, j)

, (1)

for j = 1, 2, . . . , N . This calculation provides the relative importance of each
ROI [26], and the top p ROIs are selected as the important brain regions to
guide the input data for masking. We apply different masking ratios Ri and Rn

to the important and non-important brain regions, respectively. This strategy
encourages the model to focus on learning the signal reconstruction of brain
regions most crucial for the healthy distribution during training.

Reconstruction Loss. During the signal reconstruction phase, our model is
inspired by BrainLM [3], which has demonstrated the effectiveness of masked
autoencoder in learning fMRI representations. The objective is to predict the
original signal of the masked patches. Specifically, the transformer encoder pro-
cesses only the unmasked segments, as shown in the equation:

r = Encoder(M(X)), (2)

where M denotes adaptive ROI masking and r represents the learned feature
representation. Subsequently, learnable mask tokens are added to obtain r′. The
decoder then reconstructs the masked portion:

X′ = Decoder(r′), (3)

where X′ is the reconstructed fMRI signal. We use mean square error (MSE) as
the reconstruction loss for the masked patches in X and X′, expressed as Lrec.

To further enhance representation learning, we incorporate variance invari-
ance covariance (VICReg) [2] regularization into our reconstruction loss. VICReg
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encourages more variety among the data in the batch by using a hinge loss that
maintains the standard deviation above a threshold. Thus, the total loss of our
model is updated as follows:

Ltotal = Lrec + µ · v(X′) + γ · c(X′), (4)

where Ltotal is minimized over the sample batch, and v(X′) and c(X′) represent
the variance and covariance losses at the batch level of X′, respectively. The
hyperparameters µ and γ control the relative contribution of each loss term.

2.3 Anomaly Detection

In the AD stage, the model classifies individuals as either normal or abnormal,
as shown in Fig. 1. A discrepancy score is introduced to quantify the distribu-
tional differences between individuals and healthy controls, allowing the model
to generate an anomaly score that identifies brain diseases.

Region-specific Discrepancy Score. Traditional AD methods usually rely on
loss functions of the training phase as anomaly scores. However, for fMRI data,
dependence on this single metric may yield suboptimal detection performance
due to the functional complexity of brain regions. Distinct ROIs exhibit intercon-
nected yet specialized roles, and global averaging across all ROIs risks obscuring
critical biomarker contributions. To address this limitation, we leverage intrin-
sic functional characteristics of fMRI to develop a region-specific weighted dis-
crepancy scoring strategy. Our core hypothesis posits that during pre-training,
model learns normal sample distributions, with regions demonstrating lower re-
construction errors providing stronger discriminative power between normal and
anomalous patterns. Accordingly, the pre-trained model computes masked patch
MSE values for each ROI across healthy control individuals’ input X and re-
constructed X′ data matrices. The top q ROIs with minimal MSE values are
selected as representative normative regions. Subsequently, we define the dis-
crepancy score Sdis ∈ RN as the absolute difference between an individual’s
ROI-wise MSE matrix and the normal control pattern. For each subject in the
test set T, this generates j+ k discrepancy scores. Finally, scores corresponding
to the q identified representative ROIs are weighted by coefficient λ, and the
anomaly score Sano is calculated as the normalized weighted sum:

Sano =
1

N

N∑
i=1

λi · Sdis(i). (5)

This regionally weighted score enhances the sensitivity of anomaly detection by
focusing on diagnostically relevant biomarkers.
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Table 1. AP Performance metrics for various disorders across different models (%).

Method Dementia Depressive Parkinson Bipolar Manic Anxiety Mean
AE 51.47±3.00 52.92±0.01 60.70±0.23 50.38±0.39 72.95±0.27 59.70±0.12 58.02±8.51

GDN 83.92±4.55 45.51±0.77 59.04±2.23 52.02±2.10 65.56±4.60 47.55±0.83 58.93±13.34

TranAD 54.78±2.92 62.66±1.43 58.80±1.76 67.46±1.28 65.33±2.59 52.73±0.67 60.29±6.04

OmniAnomaly 68.37±2.70 61.76±2.03 58.81±0.93 67.52±2.90 66.07±5.01 54.01±0.76 62.76±6.17

Anomaly Transformer 75.82±1.65 55.15±0.83 64.49±3.28 67.14±1.29 69.51±4.71 51.07±0.44 63.86±8.87

BrainLM 84.13±6.32 65.14±1.00 73.78±3.00 69.40±2.64 61.68±3.16 61.40±0.45 69.25±8.73

RSAD (Ours) 92.09±2.3492.09±2.3492.09±2.34 74.45±2.6474.45±2.6474.45±2.64 81.81±2.6781.81±2.6781.81±2.67 76.92±2.0076.92±2.0076.92±2.00 75.95±9.7475.95±9.7475.95±9.74 67.30±1.6667.30±1.6667.30±1.66 78.09±8.4778.09±8.4778.09±8.47

Table 2. AUC Performance metrics for various disorders across different models (%).

Method Dementia Depressive Parkinson Bipolar Manic Anxiety Mean
AE 48.00±4.24 45.62±0.10 53.86±0.51 43.32±0.56 69.35±0.75 51.44±0.23 51.93±8.99

TranAD 45.40±4.56 58.35±0.84 55.38±2.07 62.05±2.01 52.78±1.75 51.94±0.67 54.32±5.63

GDN 81.40±3.62 42.02±1.02 56.71±2.26 49.36±2.04 56.33±2.91 46.34±1.67 55.36±13.36

Anomaly Transformer 67.20±3.03 50.84±0.27 58.68±1.77 60.25±2.15 58.82±4.93 42.85±0.57 56.44±8.18

OmniAnomaly 58.20±3.75 56.06±1.42 56.29±1.34 65.00±2.94 63.31±4.91 51.09±0.74 58.32±5.36

BrainLM 83.80±5.74 62.70±1.00 72.55±2.23 69.87±1.41 61.42±4.47 61.08±2.10 68.57±8.98

RSAD (Ours) 89.80±3.4689.80±3.4689.80±3.46 70.49±2.0070.49±2.0070.49±2.00 78.50±1.9278.50±1.9278.50±1.92 73.24±3.3173.24±3.3173.24±3.31 75.14±7.3475.14±7.3475.14±7.34 63.42±1.8763.42±1.8763.42±1.87 75.09±8.4875.09±8.4875.09±8.48

3 Experimental Results

3.1 Data Preprocessing and Experimental Settings

Datasets and Preprocessing. We construct a dataset based on the UK
Biobank (UKB) [13] for the self-supervised pretraining of RSAD. The dataset
includes resting-state fMRI recordings from 1,387 healthy individuals and 272
patients with six distinct brain disorders: 10 with Dementia, 63 with Depression,
47 with Parkinson’s Disease, 38 with Bipolar Disorder, 13 with Manic Episodes,
and 101 with Phobic Anxiety. All participants are between 40 and 69 years old.
For model training, we use 80% of the healthy individuals’ data (1,109 record-
ings), with 10% allocated for evaluation, and the remaining 10%, along with the
patient data, for downstream performance assessment. All recordings undergo
standard preprocessing, which included motion correction, normalization, tem-
poral filtering, and ICA-based denoising, as detailed in previous studies [17,1].
To extract group-level time series, we employ the AAL-424 atlas [15], which
divides the brain into 424 ROIs.

Implementation details. During training, random subsequences of 200 time
steps are selected from each 490-time-step recording. These series are segmented
into blocks of 20 time steps, resulting in 10 non-overlapping segments per sub-
sequence, with a context length of 4,240 tokens. The dimensions of the affinity
encoder, the encoder, and the decoder are all set to 512, with a depth of 2, 4 and
2, respectively. Tokens are masked with probabilities Ri = 0.5 and Rn = 0.2 for
important and non-important brain regions, respectively. The hyperparameters
µ, γ, λ, p and q are set to 1, 1, 500, 10%, 40%, respectively. The epoch with
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Fig. 2. The reconstruction performance of RSAD and BrainLM. Ground truth, RSAD,
and BrainLM are colored in blue, orange, and green, respectively, with the obvious
differences highlighted (red). PCC represents pearson correlation coefficients between
the reconstructed signals and ground truth.

the smallest Ltotal on the validation set is selected for evaluating performance
on the test set. AD performance is assessed using two metrics: average precision
(AP) and area under the receiver operating characteristic curve (AUC).

3.2 Results

Comparison with SOTA. We compare Su’s proposed autoencoder for fMRI
AD detection [18], BrainLM [3]—the first foundation model for fMRI—and sev-
eral representative time-series AD methods, including Anomaly Transformer
[21], TranAD [20], OmniAnomaly [19], and GDN [8]. As shown in Table 1,
RSAD outperforms all methods in terms of AP and AUC, demonstrating an
8% improvement in AP and a 6.5% improvement in AUC over the next best
baseline. In particular, while multivariate time series AD methods focus on de-
tecting anomalies at specific time points, our approach emphasizes identifying
abnormal patterns and relationships between different ROIs, which are crucial
for fMRI data analysis. For the fMRI foundation model, we optimize both the
fMRI signal representation and the anomaly perception, resulting in significantly
better performance than BrainLM. These results further underscore the effec-
tiveness of the RSAD framework in detecting abnormalities in fMRI data.

Signal Reconstruction. The signal reconstruction results are illustrated in
Fig. 2. To evaluate performance, a test-set individual is randomly selected for
comparative analysis between our method and BrainLM, which employs pre-
trained optimal weights for predictions. Our approach exhibits superior recon-
struction quality despite BrainLM’s training dataset being approximately 60
times larger than RSAD’s. Moreover, our method achieves an average Pearson
correlation coefficient (PCC) of 0.876, significantly outperforming BrainLM’s re-
sult with 0.728. These findings demonstrate that our framework more effectively
captures the distribution and spatiotemporal characteristics of fMRI signals.
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Table 3. Ablation study of the key components: (a) affinity matrix learning (AML),
(b) adoptive ROI masking (ARoM), (c) discrepancy score (Sdis).

AML ARoM Sdis
Dementia Depressive Parkinson Mean

AP(%) AUC(%) AP(%) AUC(%) AP(%) AUC(%) AP(%) AUC(%)
× × × 82.40±6.13 82.20±5.05 63.72±2.76 61.79±1.44 71.78±2.67 71.29±1.33 72.63±8.04 71.76±8.51

× ✓ × 85.14±4.24 86.00±3.31 64.85±2.23 63.56±1.00 72.34±3.60 71.99±2.82 74.11±8.57 73.85±10.22

✓ ✓ × 87.23±3.00 88.20±1.73 67.65±1.96 64.54±1.25 75.35±2.81 73.85±3.06 76.74±8.30 75.53±10.33

× × ✓ 87.58±4.35 86.80±3.74 72.05±1.73 66.75±2.44 79.48±1.73 76.91±1.41 79.70±6.55 76.82±8.13

× ✓ ✓ 89.53±2.64 88.60±4.00 72.76±2.23 68.60±1.00 80.26±2.64 77.57±2.00 80.85±7.11 78.26±8.30

✓ ✓ ✓ 92.09±2.3492.09±2.3492.09±2.34 89.80±3.4689.80±3.4689.80±3.46 74.45±2.6474.45±2.6474.45±2.64 70.49±2.0070.49±2.0070.49±2.00 81.81±2.6781.81±2.6781.81±2.67 78.50±1.9278.50±1.9278.50±1.92 82.78±7.5882.78±7.5882.78±7.58 79.60±8.1579.60±8.1579.60±8.15

Normal

Bipolar Manic Phobic anxiety

ParkinsonDementia Depressive

Fig. 3. Visualization of top q selected region-specific weighted discrepancy scores. The
remaining brain regions are colored in light grey, and the colorbar indicates the mag-
nitude of the weighted discrepancy score.

Ablation study. We present the results of the ablation study in Table 3. We
have ablated three key components of the framework: AML, ARoM, and the dis-
crepancy score, on three randomly selected brain diseases. The results indicate
that the discrepancy score significantly improves AD performance. Addition-
ally, both AML and ARoM contribute approximately 2% to the performance
improvement, as they enhance the effectiveness of fMRI representation learning.

Brain Region Analysis. To identify distinguishable brain regions for model
recognition, we visualize regions associated with differences in discrepancy score
weights and the values of these ROIs, highlighting representative ROIs that
differentiate normal individuals from those with various brain diseases. As shown
in Fig. 3, the discrepancy scores for patients’ ROIs are significantly higher than
those of normal individuals. Furthermore, these regions primarily concentrate in
the Ventral Attention Network, Dorsal Attention Network, and Default Mode
Network, which is consistent with previous literature [22,12], illustrating the
effectiveness of the RSAD framework for brain diseases diagnosis.

4 Conclusion

In this paper, we present a novel fMRI-based AD framework, named RSAD. We
enhance the representation of fMRI data in the reconstruction task by designing
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an affinity matrix learning module and an adaptive ROI masking strategy. Addi-
tionally, we introduce a region-specific discrepancy score weighting strategy that
is sensitive to potential anomalies. Comprehensive experiments demonstrate the
effectiveness and interpretability of the RSAD framework in brain diseases diag-
nosis. Future work will focus on further investigating the relationship between
brain diseases and the functional representations of the brain.
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