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Abstract. Generating high-precision 3D dental data is crucial for clini-
cal practice, virtual simulation, and education. However, it is challenging
to synthesize smooth and detailed tooth models. In this work, we intro-
duce DuoDent, a dual-stream diffusion-based framework for the synthesis
of accurate 3D tooth point clouds followed by a refined mesh generation.
Our framework combines Transformer-based diffusion and CNN-based
diffusion to capture both global dental structures and fine local features,
thereby enhancing surface detail while reducing artifacts such as stair-
case and rough textures. The generated point clouds are optimized using
normal consistency constraints for proper alignment of surface normals,
which is key to high-quality mesh reconstruction. In addition, we apply
a normal estimation with orientation consistency to the generated point
clouds prior to converting them to output meshes, which enables the
generation of smoother and anatomically precise tooth models. Exten-
sive experiments validate that our method not only outperforms existing
approaches in quantitative metrics but also delivers superior qualita-
tive results, demonstrating its potential to significantly improve tooth
modeling in dentistry. Our code is available at https://github.com/kdy-
ku/DuoDent.

Keywords: Dual-Stream architecture - 3D Tooth Modeling - Surface
Reconstruction - Point cloud Diffusion.

1 Introduction

Rapid advancement of digital dentistry has underscored the critical need for
accurate and high-fidelity 3D dental models in clinical diagnostics, treatment
planning, and educational simulations |3}/23]. Precise modeling of 3D teeth is
essential for improving diagnostic accuracy and patient-specific simulations. In
particular, the generation of 3D teeth with high fidelity and anatomical accu-
racy enables various downstream applications of digital dentistry. For example,
3D teeth generation can be used in VR simulators with haptic and HMDs for
training for dental treatment and surgery [16}/19], by synthesizing anatomically
accurate teeth for virtual patients [11]. The synthesis can be further conditioned
on diseased or complex cases using LLMs. In addition, 3D teeth generation can
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assist implant planning by conditioning the generation on the morphology of
adjacent and opposing teeth.

However, reconstructing detailed and smooth 3D representations of teeth re-
mains challenging due to the inherent complexity of dental anatomy and the
limitations of conventional modeling techniques [11/6], which often result in ar-
tifacts such as staircase effects and surface roughness [7,23]. Recent progress
in deep learning, particularly the emergence of diffusion models, has opened
new avenues for generating high-quality 3D representations [17}18}[201241/28(30].
By probabilistically modeling data distributions, diffusion-based approaches can
synthesize complex geometries from noisy inputs [9,[17,/20,[30]. However, most
existing diffusion methods struggle to simultaneously capture both the global
structure and the fine local details intrinsic to dental morphology [4}/25]. Con-
sequently, while these models may produce reconstructions that are globally
coherent, they often lack the refined anatomical features necessary for reliable
clinical applications.

In this paper, we propose a novel dual-stream diffusion-based framework that
leverages two complementary diffusion processes to generate a 3D point cloud
representation of teeth followed by a refined mesh generation. Specifically, our
framework integrates Transformer-based diffusion to capture the overall shape
and global context of the tooth, and CNN-based diffusion that focuses on pre-
serving intricate details of local anatomy. This dual-stream approach not only
enhances surface detail but also mitigates common reconstruction issues such
as staircase artifacts and surface roughness [27]. A key innovation is the incor-
poration of normal consistency constraints [2] into the training of our model.
By using a loss function derived from the constraints, our method improves
the alignment of surface normals, leading to high-quality mesh reconstructions.
In addition, we propose orientation consistency for normal estimation prior to
converting point clouds to meshes in order for smoother mesh surfaces. Exper-
iments show that DuoDent achieves superior performance in the synthesis of
tooth meshes compared to baseline methods in both quantitative and qualita-
tive aspects. Our contributions are summarized as follows: (1) introducing a
dual-stream diffusion framework that combines a Transformer-based diffusion
for capturing global structure and a CNN-based diffusion for preserving local
details, (2) applying normal consistency to point cloud generation which can
reduce artifacts, (3) enhancing mesh reconstruction through normal estimation
with orientation consistency to produce smoother mesh surfaces.

2 Methods

2.1 Overview

A human adult has a total of 32 teeth. In dentistry, each tooth is assigned with
a standardized number. Our goal is to generate a high-quality tooth mesh con-
ditioned on the tooth number. DuoDent consists of two stages: Dual-Stream
Diffusion and Surface Reconstruction (Fig. . In the first stage, a dual-stream
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Fig. 1. DuoDent begins with (a) encoding the noisy input point cloud into a latent point
cloud and processing it through two parallel branches—a Transformer-based diffusion
to capture global structural context and a CNN-based diffusion to extract fine local
details—resulting in a high-fidelity tooth point cloud; (b) from the generated point
cloud, DuoDent draws an initial mesh and progressively refines it by re-estimating
normals and applying vertex adjustments, yielding an accurate 3D tooth surface.

diffusion module integrates a Transformer-based diffusion with CNN-based dif-
fusion to generate tooth structures as point clouds with normal consistency con-
straints to regulate the normals of generated point clouds. In the second stage,
the generated point cloud is processed where its normals are re-estimated and its
intrinsic geometric patterns are learned to progressively shrink-wrap an initial
mesh, accurately reconstructing the tooth’s 3D surface.

2.2 Dual-Stream Diffusion

The input point cloud consists of N points denoted by X, € RV*3 where N =
10*. The noisy point cloud X; € RV*3 is obtained by gradually corrupting X
over time steps t € [1,T] according to the standard DDPM process [9]. We
map X, into latent point cloud representation denoted by Z, € RM*? ysing
a PointNet++ encoder where the latent points are down-sampled from the
original point cloud to M = 64 with dimension d = 256. The latent points are
fed into two streams of denoising modules as follows.

Denoising Global Features. In the Transformer-based diffusion branch, the
goal is to model global relationships in noisy 3D point clouds. Transformers use
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self-attention mechanisms and thus are better at capturing global and long-range
dependencies as compared to, e.g., CNNs [5]. The position-aware self-attention
can incorporate positional relationships by reweighting attention scores using
a position map derived from the embeddings. The input Z; is firstly voxelized
by discretizing the continuous point cloud into a grid-like structure. The voxels
are then tokenized and are input to the Transformer layers where we used the
learnable 3D positional encodings. The tooth number is encoded and input as
conditions to the denoiser. For the actual implementation of Transformers, we
adopted the network from DiT-3D |20] which we empirically found to be well-
suited for our task. Finally, the Transformer branch produces a (noisy) global
feature Z; € RM*4 capturing rich global contextual information from the input
latent point cloud.

Denoising Local Features. The latent representation Z; is also input to the
CNN-based Diffusion branch. The goal is to learn fine-grained local details from
Z,;, exploiting the inductive bias of convolutional layers. For the implementa-
tion of CNN-based denoiser, we used Point-Voxel CNN (PVCNN) [14] similar
to Point-Voxel Diffusion [30], which was empirically found to be suitable for our
task. PVCNN is able to extract local neighborhood information through vox-
elization and 3D convolutional layers, which are combined with point features.
Finally, the CNN branch yields ZtCNN € RM*d which encapsulates intricate
geometric information by capturing the proximal relationships between points.
Output. The global feature Z* and the local feature ZCNN are concatenated
to form a fused feature representation denoted by ZF" = ZJ* @ ZFNN ¢ RMx2d,
The fused feature is passed to a PointNet++ [22| decoder which up-samples
the representation to generate the output point cloud conditioned on the given
tooth number. The integration of global and local information in ZF allows
the decoder to produce point clouds that are both structurally coherent and
rich in fine details. Overall, our dual-stream architecture synergistically com-
bines Transformer-based Diffusion for capturing global context with CNN-based
Diffusion for extracting local detail, which enhances the model’s capability to
generate detailed and realistic tooth point clouds.

Optimization. To train DuoDent, we combine two loss functions for the point
cloud reconstruction and local surface consistency. The first loss is the MSE
loss for denoising, which minimizes the difference between the model output
(predicted noise) €y(X¢,t) and the ground truth noise e:

Luse(t) = [le — eo(Xe, 1) (1)

The second loss is for the local surface smoothness based on Normal Consis-
tency Constraint (NCC) [2]. The NCC measures the variation in the similarity
of normal vectors among neighboring points. The NCC loss is applied to the
estimated output at all the diffusion timesteps as follows. Consider X (t) which
is an estimated output of input point cloud X at timestep ¢ given by

Xo(t) = (X — V1 —ay eo(X1,1))/Vay (2)
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where &; is a parameter for the noise schedule |9]. For a point p in Xo(t), its
normal n(p) is estimated via a local plane fitting process based on Principal
Component Analysis (PCA) [26] as follows. Consider local neighborhood N (p)
of p is defined as either all points within a radius of 0.1 units or the 30 nearest
neighbors, whichever criterion is satisfied first. The centroid of N (p), denoted
by p, is computed as the average of the positions of the neighboring points, and
the covariance matrix is defined as:
1
C:W Z (¢—p(g—p" (3)
q€N(p)

The unit-length eigenvector corresponding to the smallest eigenvalue of C' is
defined as the normal estimate n(p). The NCC loss is defined as:

Incolt) = > () nla) - n(r)’ @

peXo(t) \9EN(p)

where n(p) and n(q) are the estimated normal vectors at point p and ¢ from
Xo(t), and p(p) is defined by n(p) = 1/IN(p)| 2 enp) n(p)Tn(q). In our for-
mulation, the NCC loss is computed at each timestep ¢ to dynamically enforce
normal consistency throughout the iterative refinement process. Thus, the NCC
loss ensures that the estimated normals remain consistent and the local surface
smoothness is maintained throughout the entire diffusion process. The overall
loss is a weighted sum of these two components:

L =E[1,1),e~n(0,1) [MMsE - Luse(t) + Ance - Lnce(t)] (5)

with hyperparameters Aysg and Axcce balance the losses.

2.3 Surface Reconstruction

Normal Estimation with Orientation Consistency. We begin by properly
estimating the normals of the point cloud generated from the diffusion stage.
The estimated normals will be used later for refining the mesh output. For each
point p from the generated point cloud, we compute an initial estimate of its
normal n(p) using PCA, or Eq. . Next, we propose to apply the orientation
consistency across the entire point cloud for coherent normal orientations. The
orientation consistency refers to the process of adjusting normals so that adjacent
normals are uniformly aligned, thereby mitigating local estimation errors [10l12].
The concept can be used to achieve normal alignment robust to noise in the
output generated from the diffusion models. We propose a simple method for
orientation alignment as follows. For each point p, we refine the orientation of
its normal n(p) relative to the normals of its k nearest neighbors denoted by
Ni(p). The adjustment is performed by aligning the normal direction with that
of the majority of its neighbors given by

n(p) < sign [ > n(p)"n(q) | n(p) (6)

qENL(p)
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Table 1. Quantitative comparison with baselines using 1-NNA (CD, EMD), Normal
Consistency Loss (Normal.C), and F-score. The best values are highlighted in bold.

Method CD (J) EMD ({) Normal.C (T) F-Score (1)
LION 28] 0.885 0.829 0.816 0.594
SLIDE |18| 0.697 0.621 0.894 0.882
DiT-3D [20] 0.711 0.629 0.914 0.881
PVD |30] 0.637 0.631 0.913 0.823

DuoDent (Ours) 0.557 0.532 0.926 0.912
Table 2. Evaluation results on FairyTooth2 |29].

Method CD ({) EMD ({) Normal.C (1) F-Score (1)
LION |28] 0.891 0.856 0.798 0.554
SLIDE |18] 0.705 0.711 0.765 0.806
DiT-3D [20] 0.738 0.678 0.889 0.769
PVD |30] 0.686 0.697 0.801 0.795

DuoDent (Ours) 0.629 0.597 0.919 0.891

where Eq. @ ensures that the direction of n(p) is consistent with the predom-
inant orientation in its local neighborhood. This two-stage process, local plane
fitting with PCA followed by orientation consistency, produces accurately esti-
mated and uniformly oriented normals suitable for further processing.
Self-Prior Optimization. After estimating the normal vectors, we reconstruct
the surface mesh from the point cloud using Point2Mesh [§|. Starting with an ini-
tial watertight mesh, the method incrementally refines vertex positions through
a CNN-based displacement model. The optimization minimizes a bidirectional
Chamfer distance and incorporates a beam-gap loss to align the evolving mesh
with the input point cloud [8]. This method employs weight-sharing and a coarse-
to-fine refinement strategy to maintain local consistency and capture fine details,
enabling mesh reconstruction adaptable to various point cloud conditions with-
out reliance on external priors or extensive pre-training.

3 Experiments

3.1 Experimental Setup

Datasets. We utilize a dataset consisting of 2,255 tooth samples derived from 75
anonymized 3D dental cone-beam computed tomography (CBCT) scans, which
are used to represent dental structures in voxel format. The CBCT scans were
sourced from Korea University Anam Hospital and approved by the Institu-
tional Review Board at Korea University (IRB No. 2020AN0410). Annotation
processes involved rigorous cross-validation and were subsequently reviewed by
specialists in oral and maxillofacial surgery. The dataset was divided into train-
ing, validation, and test subsets following an 8:1:1 ratio. Each individual tooth
was extracted as tensors with dimensions of 96 x 96 x 96, and corresponding
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Fig. 2. Surface reconstruction results of the generated tooth. The rightmost part shows
a comparison between the results with and without orientation consistency (O.C).

point clouds were densely sampled with 10* points. These point clouds were
then scaled to fit within a three-dimensional range of [—1,1]3, enabling precise
reconstruction.

Evaluation Metrics. We use four metrics widely used in recent point cloud
and mesh generation studies : 1-Nearest Neighbor Accuracy (1-NNA)
computed with both Chamfer Distance (CD) and Earth Mover’s Distance
(EMD), normal consistency, and F-score. The 1-NNA metric, calculated using
both CD and EMD, assesses the distributional similarity between generated and
ground truth point clouds, assessing both quality and diversity through a leave-
one-out accuracy of a 1-NN classifier. Normal consistency evaluates the geomet-
ric fidelity of surfaces by measuring the alignment of normal vectors between
generated and target point clouds. The F-score offers a balanced assessment of
precision and recall, computed over various distance thresholds.

Implementation. The loss function weights in were set to Aysg = 1 and
Ance = 0.1. The optimization was performed using the Adam optimizer with
a learning rate of 10™% and a batch size of 16. For surface reconstruction, the
number of neighbors (k) was set to 30, and the process was executed over 1,000
iterations. For the baselines, DiT-3D was trained for 3,000 epochs, LION
for 35,000 iterations, and PVD for 3,000 epochs. In the SLIDE , the latent
position DDPM was trained for 56,000 iterations, the latent feature DDPM for
30,000 iterations, and the number of key points was set to 16.
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3.2 Experimental Results

Quantitative results. We evaluated our method against state-of-the-art ap-
proaches (LION, SLIDE, DiT-3D, and PVD) using Chamfer Distance (CD),
Earth Mover’s Distance (EMD), Normal Consistency Loss, and F-Score (see
Table . Our approach achieves a CD of 0.557 and an EMD of 0.532 (com-
puted via 1-NNA), demonstrating superior point-wise accuracy and distribution
alignment in reconstructing high-fidelity 3D dental structures. Moreover, our
method consistently outperforms the baselines across all metrics. Notably, the
highest Normal Consistency Loss (0.926) confirms the effectiveness of our nor-
mal optimization strategy in preserving local surface quality, which is crucial
for generating meshes that are both geometrically accurate and visually smooth.
Additionally, an F-Score of 0.912 underscores the robust structural coherence
and precise reconstruction capabilities of our approach. To further validate gen-
eralizability of our model, we evaluated the methods on ToothFairy2 29|, which
is a public dataset of CBCT images with a resolution similar to our data. As
shown in Table 2 DuoDent achieved the best performance, demonstrating its
effectiveness on diverse datasets.

Qualitative results. A visual comparison of generated samples (Fig. [2) reveals
that DuoDent produces smoother surfaces, reduces staircase artifacts, and en-
hances anatomical details. Unlike baseline methods which suffer from surface
roughness, structural distortions, or local inaccuracies, DuoDent captures both
global structural coherence and local curvatures, yielding more realistic dental
models. Our dual-stream diffusion framework appears to help the model both
learn global structures and preserve fine details. The normal estimation and op-
timization process helps reduce high-frequency noise while maintaining sharp
anatomical boundaries and continuous surfaces. Moreover, the result shows that
using orientation consistency leads to smoother surfaces and better preserves
structural details, e.g., see the lower right part of Fig. 2] A similar trend for
qualitative improvement through orientation consistency was observed in the
generated samples. These qualitative results demonstrate the effectiveness of
DuoDent in generating accurate, high-resolution 3D dental models suitable for
clinical and educational applications.

Ablation study. To validate the contributions of each component of DuoDent,
we performed an ablation study (Table . The results indicate that the dual-
stream architecture and normal consistency constraints collectively enhance the
accuracy of reconstruction. Notably, integrating both the Transformer-based dif-
fusion and CNN-based diffusion significantly improves performance over single-
stream alternatives, reinforcing the necessity of a hybrid feature extraction.

4 Conclusion

In this study, we introduced a dual-stream diffusion framework for 3D tooth
modeling. DuoDent combines a Transformer-based diffusion to capture global
shapes and a CNN-based diffusion to preserve local details in generating point
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Table 3. Ablation study. The best values are highlighted in bold. In this table, “Global”
denotes the Transformer-based Diffusion Module, and “Local” denotes the CNN-based
Diffusion Module.

Method CD (J) EMD ({) Normal.C (T) F-Score (1)
Global+NCC 0.666 0.592 0.903 0.840
Local+NCC 0.676 0.702 0.900 0.763
Global+Local 0.598 0.605 0.921 0.885

DuoDent (Ours) 0.557 0.532 0.926 0.912

clouds. Normal consistency constraints are applied to optimize point cloud qual-
ity and smooth surface reconstruction. Experiments show that our approach
outperforms existing techniques in both quantitative and qualitative evaluations.
The method effectively reduced artifacts while preserving essential anatomical
features. An ablation study confirmed the complementary benefits of the dual-
stream architecture and normal optimization. Overall, our framework offers a
reliable solution for accurate and high-quality synthesis of 3D dental data.
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