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Abstract. Synthesizing high-quality medical videos remains a signifi-
cant challenge due to the need for modeling both spatial consistency and
temporal dynamics. Existing Transformer-based approaches face criti-
cal limitations, including insufficient channel interactions, high compu-
tational complexity from self-attention, and coarse denoising guidance
from timestep embeddings when handling varying noise levels. In this
work, we propose FEAT, a full-dimensional efficient attention Trans-
former, which addresses these issues through three key innovations: (1)
a unified paradigm with sequential spatial-temporal-channel attention
mechanisms to capture global dependencies across all dimensions, (2)
a linear-complexity design for attention mechanisms in each dimension,
utilizing weighted key-value attention and global channel attention, and
(3) a residual value guidance module that provides fine-grained pixel-
level guidance to adapt to different noise levels. We evaluate FEAT on
standard benchmarks and downstream tasks, demonstrating that FEAT-
S, with only 23% of the parameters of the state-of-the-art model Endora,
achieves comparable or even superior performance. Furthermore, FEAT-
L surpasses all comparison methods across multiple datasets, showcasing
both superior effectiveness and scalability. Code is available at here.
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1 Introduction

Recent advancements in diffusion models have revolutionized artificial intelligence-
generated content (AIGC) in medical imaging, enabling transformative applica-
tions in image synthesis [1], cross-modal translation [2], and image reconstruction
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[3]. While these models demonstrate remarkable capabilities in generating static
medical images with spatial information, synthesizing high-fidelity dynamic med-
ical videos—which require modeling additional temporal dynamics and consis-
tency—remains a significant challenge. To this end, researchers have explored
various approaches to encoding spatial-temporal dynamics [4,5,6,7], including
pseudo-3D convolution [4], serial 2D+1D (spatial + temporal) convolutions [7],
and spatial-temporal self-attention [6,5]. Given the ability of self-attention to
capture long-range dependencies and the scalability of Transformers, most re-
cent studies have largely embraced the Transformer architecture, employing cas-
cading spatial and temporal self-attention mechanisms [6].

However, the current Transformer incorporating both spatial and temporal
self-attention still faces three critical limitations: (1) Inadequate Channel-
Wise Interaction. Despite their sophisticated handling of spatial and tem-
poral dimensions, existing architectures neglect building channel dependencies
crucial for modeling feature compositions. Additionally, the impressive gener-
ation performance of diffusion models relies heavily on the denoising process
while channel attention [8] has been widely proven to be effective for denois-
ing. Omitting building interactions over such an important dimension hinders
the model performance. (2) Prohibitive Computational Complexity. The
self-attention mechanisms used to model both spatial and temporal dependencies
suffer from quadratic computational complexity, which severely limits their prac-
tical applicability in medical videos with high resolution and many frames. (3)
Coarse Denoising Guidance. In diffusion models, the model needs to adapt to
inputs affected by different noise levels across various timesteps. Existing meth-
ods rely on timestep embeddings as global-level guidance, using adaptive layer
normalization (adaLN) [9] to adapt to specific noise levels. However, this ap-
proach is too coarse and fails to account for dynamic interactions between noise
patterns and video content. While recent work [6] has utilized attention maps
from DINO [10] to account for content information for finer-grained guidance,
this method introduces additional substantial computational overhead during
training. Therefore, existing methods have drawbacks in achieving efficient and
effective medical video generation.

To address the aforementioned challenges, we present FEAT, a full-dimension
efficient attention Transformer for medical video generation through three key in-
novations: (1) Full-Dimensional Dependency Modeling. FEAT introduces a uni-
fied paradigm with sequential spatial-temporal-channel attention, establishing
global dependencies across all dimensions and enabling holistic feature modeling
of medical videos. (2) Linear Complexity Design. FEAT replaces conventional
self-attention with two computationally efficient components: (a) weighted key-
value (WKV) attention [11,12,13] inspired by RWKV [11] for modeling spatial
and temporal dependencies, and (b) global channel attention [8] for modeling
channel dependencies. Both components achieve global dependencies within their
respective dimensions while maintaining linear computational complexity [14].
(3) Residual Value Guidance. FEAT introduces a novel residual value guidance
module (ResVGM) that leverages input embeddings—encoding both video con-
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tent and specific noise patterns—as fine-grained pixel-level guidance to adapt the
model for processing input of different timesteps. The ResVGM is parameter-
efficient with negligible computational overhead while significantly improving
generation performance. With these three innovations, FEAT achieves both ef-
ficient and effective medical video generation. Experiments show that a small
version of FEAT (denoted as FEAT-S), with only 23% of the parameters of the
state-of-the-art model Endora [6], delivers comparable or even superior perfor-
mance. Furthermore, the larger version, FEAT-L, outperforms all comparison
methods across different datasets.
Our contributions are three-fold:

— We propose FEAT, a novel full-dimensional efficient attention Transformer
for medical video generation. FEAT establishes global dependencies across
all dimensions, including spatial, temporal, and channel, thereby enhancing
the model’s ability to capture holistic relationships in medical videos.

— We replace the original self-attention mechanism, which suffers from quadratic
computational complexity, with attention mechanisms that establish global
dependencies with linear complexity, thereby enhancing model efficiency.

— We propose a novel residual value guidance module (ResVGM) that lever-
ages input embeddings with both video content and specific noise patterns
to provide fine-grained pixel-level guidance. This allows FEAT to effectively
adapt to different timesteps with minimal computational overhead, signifi-
cantly improving generation performance.

2 Method

We first introduce the preliminaries of the diffusion model for video genera-
tion in Section. 2.1. In Section 2.2, we then present the details of the proposed
full-dimensional efficient attention Transformer (FEAT), including its overall
architecture and the specific efficient attention mechanism tailored to each di-
mension. Finally, in Section 2.3, we introduce the novel residual value guidance
module (ResVGM), which provides fine-grained pixel-level guidance for adapting
to different denoising timesteps.

2.1 Preliminaries

Diffusion probabilistic models have emerged as a groundbreaking paradigm in
generative modeling, demonstrating remarkable potential for image and video
synthesis. These models operate by learning to transform random noise sampled
from a standard normal distribution p(x7) = N(0,I) into high-fidelity data
samples through an iterative denoising procedure. The forward diffusion process
gradually corrupts input data xg by adding Gaussian noise across T timesteps.
This is defined by the transition g(x:|x;—1), with the marginal distribution at
timestep t expressed as: q(x¢|xg) = N (ayxo, 01), where the coefficients of oy
and o, are designed such that zp convergence to N'(0,I) as ¢ — T' [15]. In the
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Fig. 1. The pipeline of FEAT for medical video generation. (a) Architecture of conven-
tional models using cascaded spatial-temporal Transformer blocks. (b) Architecture of
FEAT, which incorporates cascaded spatial-temporal-channel Transformer blocks. (c)
Details of the conventional Transformer block, featuring quadratic computational com-
plexity for self-attention and global timestep guidance. (d) Details of the Transformer
block in FEAT, utilizing attention with linear computational complexity and guidance
from both global timestep and pixel-level residual value Z.

reverse diffusion process, a noise prediction network ey(x;,t) parameterizes the
transition p(x;_1|x;), iteratively denoising z; to recover the data distribution.
The training process involves optimizing the evidence lower bound (ELBO) op-
timization [15]:

ELBO =E [||69 (aixg + o€ t) — 6“3} ) (1)

where € ~ A(0,I) and ¢ follows a uniform sampling.

Since training diffusion models directly in high-resolution pixel space can be
computationally expensive, we adopt the widely used approach of latent diffusion
models [16,17], performing the diffusion process in an encoded latent space with
the help of a pretrained autoencoder [16] for both encoding and decoding.

2.2 Full-Dimensional Efficient Attention Transformer

Existing Transformer architectures for medical video generation often face three
major drawbacks: insufficient channel-wise interaction, excessive computational
complexity due to self-attention, and coarse denoising guidance from the timestep.
To overcome these challenges, we propose the full-dimensional efficient atten-
tion Transformer (FEAT), as illustrated in Figure. 1, which introduces three
key innovations: (1) Unlike conventional architectures that primarily establish
spatial-temporal dependencies (as shown in Figure. 1 (a)), FEAT builds global
dependencies across all dimensions, including spatial, temporal, and channel di-
mensions (as shown in Figure. 1 (b)). (2) To mitigate the computational burden
imposed by self-attention in traditional Transformer blocks (as seen in Figure. 1
(c)), FEAT leverages attention mechanisms that achieve global attention with
linear computational complexity across all dimensions (as shown in Figure. 1
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Fig. 2. Three distinct Transformer blocks in FEAT. (a) Spatial Transformer block with
WKV attention [12]. (b) Temporal Transformer block with WKV attention [12]. (c)
Channel Transformer block with global channel attention [8]. F, H, W, and C represent
the frame number, height, width, and channel of the input feature, respectively.

(d)). (3) To address the coarse, global-level guidance that struggles to adapt
to varying noise levels at different timesteps, FEAT introduces a residual value
guidance module (ResVGM) for fine-grained, pixel-level denoising (as shown in
Figure. 1 (d)). In the following subsection, we will describe the architecture of the
Transformer blocks that establish spatial, temporal, and channel dependencies
in detail. The details of the ResVGM are elaborated in Subsection 2.3.

To ensure efficient modeling across all dimensions, we design different Trans-
former blocks with efficient attention for each dimension. Given the exceptional
performance of weighted key-value (WKV) attention [12,13] and global channel
attention [8] in denoising, coupled with their ability to achieve global attention
with linear computational complexity, we choose to apply them to denoising
diffusion video generation. Specifically, for the spatial and temporal Trans-
former blocks, we adopt the WKV attention mechanism as described in [12],
as illustrated in Figure 2 (a) and (b). To better accommodate the spatial and
temporal dimensions, we modify the original token-shift mechanism from [12],
which is designed to enhance locality. For the spatial Transformer block, we in-
troduce 2D depth-wise convolution [18] (denoted ’Shift S’) to strengthen locality
in the spatial dimension. Similarly, for the temporal Transformer block, we apply
1D depth-wise convolution (denoted ’Shift T’) to enhance locality in the tempo-
ral dimension. For the channel Transformer block, we directly employ the
global channel attention mechanism proposed by [8], as depicted in Figure 2 (c).
With these three Transformer blocks sequentially cascaded, FEAT can efficiently
establish global dependencies across spatial, temporal, and channel dimensions,
enabling holistic feature modeling for medical videos.

2.3 Residual Value Guidance Module

Most existing video diffusion models employ the timestep ¢ as global guidance to
adapt to specific noise levels in the denoising process. However, this method is
relatively coarse and insufficient for content-dependent denoising. To overcome
this limitation, we propose integrating the input embedding (denoted as Z) as
an additional, fine-grained guidance. During the denoising process, the input em-
bedding Z—obtained via convolution of the input (or the denoising output at
the previous timestep)—encodes both the generated video content and the asso-
ciated noise patterns. These components provide crucial guidance for achieving
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Fig. 3. The schematic diagram of the proposed ResVGM, where (a) represents the
original framework, and (b) denotes the framework with ResVGM incorporated to dif-
ferent Transformer blocks. The frameworks primarily illustrate operations surrounding
the attention mechanism in Transformer blocks, where ResVGM is integrated, while
other modules are omitted for simplicity.

content-dependent denoising at specific noise levels. As illustrated in Figure 3,
we incorporate the input embedding Z to all the Transformer blocks as fine-
grained guidance. Specifically, for the i-th Transformer block, Z is added as a
residual value [19] to interact with the input value V; in the attention and the
output hidden H; as follows:

H; = LinAttention(Q;, K;, Vi + \LZ) + \2(Z - V}), (2)

where LinAttention(-) denotes the two attention mechanisms—WKYV attention
and global channel attention—which both exhibit linear computational complex-
ity. Q;, K;, and V; denote the query, key, and value, respectively. Note that Q);
can be omitted in WKV attention. A}, A2 € RY are two learnable weighting
parameters. This process ensures that feature extraction across all Transformer
blocks in the model is gradually refined based on the input video content and
noise level. The ResVGM introduces negligible additional parameters and com-
putational overhead, while significantly improving performance.

3 Experiments

3.1 Experiment Settings

Datasets and Evaluation. Our experimental evaluation is conducted on two
publicly available medical video datasets: Colonoscopic [20] and Kvasir-Capsule
[21]. Adhering to standardized video processing protocols [6], we preprocess the
data by uniformly extracting 16-frame sequences from continuous videos through
fixed-interval sampling. All frames are resized to 128x128 pixel resolution dur-
ing model training to ensure dimensional consistency. For quantitative assess-
ment, we employ four established evaluation metrics: Fréchet Inception Distance
(FID) [22], Inception Score (IS) [23], Fréchet Video Distance (FVD) [24], and its
content-debiased variant CD-FVD [25]. Following the evaluation framework of
StyleGAN-V [26], we compute FVD scores through statistical analysis of 2048
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Table 1. Quantitative Comparisons on Medical Video Datasets.

Colonoscopic [20] Kvasir-Capsule [21]
FVD | CD-FVD | FID | IST FVD | CD-FVD | FID | IS 1
StyleGAN-V [26] (CVPR22) 2110.7 1032.8 226.14 2.12 183.5 898.4 31.61 2.77 \

Method

Parameters(M)| FLOPs(G)|

\
\
LVDM [17] (Arxiv’23) 1036.7  792.9 96.85 1.93 1027.8  615.4  200.90 1.46 \ \
MoStGAN-V [27] (CVPR23) 468.5 592.0 53.17 3.37 828 168.3 17.34 2.53 \ \
Endora [6] (MICCAT’24) 460.7 545.3 13.41 3.90 72.3 152.3 10.61 2.54 673.7 465.8
FEAT-S(Ours) 415.4 444.0 13.34 3.96 72.2 138.2 9.97 2.65 158.0 118.7
FEAT-L(Ours) 351.1 397.0 12.31 4.01 59.2 116.2 8.65 2.70 629.0 472.1
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Fig. 4. Qualitative Comparison on Colonoscopic and Kvasir-Capsule Datasets.

video samples, with each sample maintaining the complete 16-frame temporal
structure to preserve motion dynamics and temporal coherence.

Implementation Details. Our implementation employs the AdamW optimizer
with a fixed learning rate of 1 x 10™* across all architectural configurations.
Data preprocessing incorporates basic horizontal flipping as the sole augmenta-
tion strategy to preserve feature authenticity. The model architecture integrates
a pretrained variational autoencoder from the Stable Diffusion framework [2§]
as its foundational component, enhanced by 27 specialized neural modules orga-
nized in an interleaved configuration: 9 spatial processors for geometric feature
extraction, 9 temporal analyzers for motion pattern modeling, and 9 channel
operators for cross-dimensional feature interaction. Hidden dimensions are con-
figured as d=512 for small (S) models and d=1024 for large (L) model variants
to accommodate computational constraints. Following established GAN train-
ing protocols [9], we implement exponential moving average (EMA) stabiliza-
tion with all final outputs generated from converged EMA parameters, ensuring
training stability and output consistency.
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Table 2. Semi-supervised Classification Table 3. Ablation Studies of Proposed

Result (F1 Score) on PolyDiag [29] . Components on Colonoscopic [20] Dataset.
Method Colonoscopic [20] WKV Channel ResVGM FVD/| FID|
Supervised-only 74.5 X X X 990.0 23.45
LVDM 76.2 (+1.7) v x x 7884 20.16
Endora 87.0 (+12.5) v v X 583.6 16.98
FEAT-S(Ours)  89.9 (+15.4) Y% v 7 415.413.34

FEAT-L(Ours) 91.3 (4+16.8)

3.2 Comparison with State-of-the-arts

We conduct performance comparison by replicating several advanced video gen-
eration models designed for general scenarios on the medical video datasets,
including StyleGAN-V [26], MoStGAN-V [27], LVDM [17], and Endora [6]. As
shown in Table. 1, FEAT-S achieves comparable performance to Endora while
requiring significantly fewer parameters and lower computational costs. Mean-
while, FEAT-L outperforms state-of-the-art methods. The visual qualitative
comparison results in Figure. 4 demonstrate that FEAT can generate videos
with higher quality and consistency.

3.3 Further Empirical Studies

In this section, we demonstrate the data augmentation effects of leveraging the
videos generated by our FEAT for downstream tasks, and conduct rigorous ab-
lation experiments on the proposed improvements.

Downstream Task. We explore the use of generated videos as unlabeled data
for semi-supervised learning, specifically leveraging the FixMatch framework [30]
on video-based disease diagnosis benchmarks, such as PolyDiag [29]. For this ex-
periment, we randomly select 40 labeled videos (n; = 40) from the PolyDiag
training set and use 200 generated videos (n, = 200) from Colonoscopic [20] as
unlabeled data. The F1 scores for disease diagnosis, along with the performance
improvements over the supervised-only baseline, are presented in Table. 2. The
results clearly demonstrate that data generated by FEAT significantly boosts
the performance of downstream tasks compared to both the supervised learning
baseline and other video generation techniques, thereby confirming FEAT’s ef-
fectiveness as a reliable video data augmenter for video-based analysis tasks.

Ablation Studies. Table. 3 presents an ablation study to evaluate the key com-
ponents of the proposed FEAT-S model. We begin with a baseline that employs
a simple spatial-temporal Transformer diffusion model, without incorporating
any of the proposed strategies. Next, we incrementally add the three proposed
design strategies: WKV attention, channel attention and ResVGM. The results
clearly show that each strategy contributes to a progressive improvement in the
model’s performance, highlighting the essential role of these design choices in
enhancing the effectiveness of the medical video generation model.
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4 Conclusion

This paper introduces FEAT, a novel full-dimensional efficient attention Trans-
former that significantly advances medical video generation. FEAT addresses
three key challenges—limited channel-wise interaction, prohibitive computational
cost, and coarse denoising guidance—through three core innovations. First, a
sequential spatial-temporal-channel attention paradigm enables holistic feature
modeling across all dimensions. Second, a linear-complexity attention design
makes it scale efficiently to high-resolution videos. Third, a lightweight residual-value
guidance module adaptively refines denoising, optimizing generation performance
at negligible extra computational cost. Experimental results demonstrate that
FEAT outperforms existing methods in terms of both efficiency and effective-
ness, marking a substantial step forward in the field of medical video generation.
Future work will extend FEAT to additional imaging modalities and conduct
more comprehensive evaluations.
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