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Abstract. All-in-one medical image restoration (MedIR) aims to ad-
dress multiple MedIR tasks using a unified model, concurrently recover-
ing various high-quality (HQ) medical images (e.g., MRI, CT, and PET)
from low-quality (LQ) counterparts. However, all-in-one MedIR presents
significant challenges due to the heterogeneity across different tasks. Each
task involves distinct degradations, leading to diverse information losses
in LQ images. Existing methods struggle to handle these diverse infor-
mation losses associated with different tasks. To address these challenges,
we propose a latent diffusion-enhanced vector-quantized codebook prior
and develop DiffCode, a novel framework leveraging this prior for all-
in-one MedIR. Specifically, to compensate for diverse information losses
associated with different tasks, DiffCode constructs a task-adaptive code-
book bank to integrate task-specific HQ prior features across tasks, cap-
turing a comprehensive prior. Furthermore, to enhance prior retrieval
from the codebook bank, DiffCode introduces a latent diffusion strategy
that utilizes the diffusion model’s powerful mapping capabilities to iter-
atively refine the latent feature distribution, estimating more accurate
HQ prior features during restoration. With the help of the task-adaptive
codebook bank and latent diffusion strategy, DiffCode achieves superior
performance in both quantitative metrics and visual quality across three
MedIR tasks: MRI super-resolution, CT denoising, and PET synthesis.

Keywords: Medical image restoration · Vector-quantization · Diffusion.

1 Introduction

All-in-one medical image restoration (MedIR) aims to address multiple MedIR
tasks using a single, unified model, simultaneously recovering various high-quality
⋆ Corresponding author
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(HQ) medical images (e.g., MRI, CT, and PET) from their degraded low-quality
(LQ) counterparts. In contrast to current MedIR methods which primarily focus
on single-task restoration, such as MRI super-resolution [4, 12, 28], CT denois-
ing [3, 6, 16], and PET synthesis [8, 13, 31], all-in-one MedIR methods offer more
versatile solutions for complex clinical scenarios, while improving parameter ef-
ficiency and streamlining workflows.

All-in-one MedIR presents more significant challenges, as it requires man-
aging task heterogeneity across different tasks, which is absent in single-task
settings. Specifically, different MedIR tasks are characterized by distinct degra-
dations. These degradations exhibit unique perturbation patterns, resulting in
diverse information losses in LQ images [20]. However, existing all-in-one MedIR
methods [22] struggle to adaptively handle these diverse information losses asso-
ciated with different tasks. Despite the compelling potential of all-in-one MedIR,
research in this area remains relatively underexplored.

To address these challenges, the vector-quantized (VQ) codebook prior [10,
19] emerges as a promising solution, showcasing two key advantages. First, the
VQ codebook prior effectively compensates for LQ images by supplementing rich
HQ information. By learning the discrete latent feature representations of unde-
graded images, a well-trained VQ codebook encodes extensive prior knowledge
as HQ prior features within the codebook, with each prior feature representing a
fundamental element of HQ image information. Second, the VQ codebook prior is
well-suited for handling the task heterogeneity in all-in-one MedIR. Unlike priors
in single-task restoration that are typically task-specific, the prior in all-in-one
MedIR must be adaptive to different tasks. The VQ codebook prior satisfies this
requirement, as VQ codebook priors from different tasks can be seamlessly inte-
grated through a simple codebook concatenation mechanism. This allows us to
develop separate codebooks for each task and effortlessly consolidate them into
a unified, task-adaptive codebook bank. In this way, the codebook bank inte-
grates the task-specific HQ prior features from each task, providing customized
compensation for the diverse information losses associated with different tasks.

However, the effective utilization of this codebook bank requires retrieving
accurate HQ prior features that semantically correspond to the LQ degraded
features from LQ images during restoration. Such accurate retrieval provides
the necessary prior knowledge to consistently compensate for information loss
in LQ images. Nevertheless, intrinsic degradation in LQ images corrupts their
feature representations, causing a distribution misalignment between the LQ
degraded features and the HQ prior features in the latent space. This misalign-
ment prevents the LQ degraded features from accurately retrieving their HQ
counterparts, ultimately limiting the full potential of the codebook bank.

To alleviate this misalignment issue, we introduce a latent diffusion strategy
[17] that takes advantage of the iterative denoising process of the diffusion model
(DM) to refine the latent feature distribution, estimating more appropriate HQ
prior features conditioned on the LQ degraded features during restoration. DMs
have recently excelled in latent distribution mapping for image restoration tasks
[12, 14, 21]. Unlike direct transformation methods that enforce one-step mapping,
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Fig. 1. Overview of DiffCode. (a) Stage I constructs a codebook bank to encode HQ
priors. (b) Stage II leverages latent diffusion strategy to enhance prior retrieval from
the codebook bank. (c) Stage III performs restoration guided by retrieved priors. (d)
RQ. (e) DM training. (f) Expert routing in TARM. (g) Network Architecture.

DMs gradually reconstruct the complex underlying HQ distribution through
controlled noise reduction. This enables the DM to refine a feature distribution
that more closely aligns with HQ prior features, thereby facilitating accurate
prior retrieval and better exploiting the potential of the codebook bank.

Building on these insights, we propose DiffCode, a novel framework that
leverages a latent diffusion-enhanced VQ codebook prior for all-in-one MedIR.
DiffCode operates in three stages. Stage I: To compensate for the diverse infor-
mation losses associated with different tasks, DiffCode constructs a task-adaptive
codebook bank for HQ prior encoding, with each codebook in the bank encap-
sulating task-specific HQ prior features. Stage II: With HQ prior features pa-
rameterized in the codebook bank, DiffCode trains a DM in the latent space to
optimize prior retrieval. Conditioned on LQ degraded features, DM iteratively
refines the feature distribution that better aligns with HQ prior features, provid-
ing more accurate HQ features as VQ codebook priors. Stage III: Decoding the
HQ prior features retrieved from the codebook bank yields reliable restoration
references with enriched HQ information. DiffCode performs the final restoration
under the guidance of these references. Furthermore, to mitigate potential task
interference [29], we adopt a task-aware global routing strategy (TARS) similar
to the routing strategy in AMIR [22], assigning different tasks to specialized
experts throughout the network. The contributions are summarized below.

1. We are the first to exploit the VQ codebook prior for all-in-one MedIR.
By constructing a task-adaptive codebook bank that integrates task-specific
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prior features from each task, our approach provides customized compensa-
tion for the diverse information losses associated with different tasks.

2. We introduce a latent diffusion strategy that leverages the powerful mapping
capability of the DM to enhance prior retrieval from the codebook bank. By
iteratively refining the latent feature distributions, the DM estimates more
accurate HQ prior features for LQ images during restoration.

3. Extensive quantitative and qualitative experiments validate the state-of-the-
art performance of DiffCode.

2 Method

In this section, we first present the three-stage pipeline of our proposed DiffCode
in Secs. 2.1–2.3. Furthermore, to mitigate potential task interference, we adopt
a task-aware global routing strategy (TARS), which is detailed in Sec. 2.4.

2.1 Stage I: Task-Adaptive Codebook Bank Construction

This stage constructs a task-adaptive codebook bank {Zn}n∈[N ] for HQ prior
encoding, with each codebook Zn dedicated to the nth task. For more precise
prior encoding, we introduce a residual quantization strategy [10]. {Zn}n∈[N ] is
trained through self-reconstruction learning [19] on the HQ data. Specifically,
HQ images Inhq from the nth task are first encoded into latent features zn by
the encoder Evq. Then, each element zni,j is recursively quantized by the nearest
code item zm in Zn for D iterations. This operation is known as residual vector
quantization (RQ). As shown in Fig. 1d, the dth RQ is formulated as:

R
(d)
i,j = R

(d−1)
i,j −∆f

(d−1)
i,j , (1)

∆f
(d)
i,j = argmin

zm∈Zn

∥∥∥R(d)
i,j − zm

∥∥∥2 . (2)

Where ∆f
(0)
i,j = 0, R(d)

i,j is the dth residual and R
(0)
i,j = zni,j . The quantized

element qni,j =
∑D

d=1 ∆f
(d)
i,j . All elements qni,j are then combined into quantized

features znq , which are reconstructed by the decoder Gvq for the outputs Înhq.
After Stage I, {Zn}n∈[N ] captures a comprehensive VQ codebook prior, with

each Zn encapsulating task-specific HQ prior features for the nth task.

Training Strategy. The total loss Lstage1 is defined as

Lstage1 = ∥Inhq − Înhq∥1 + ∥sg[zn]− znq ∥22 + δ∥zn − sg[znq ]∥22, (3)

where δ = 0.25 followed by the paper [10]. The ∥Inhq − Înhq∥1 denotes the re-
construction loss. sg[] denotes the stop-gradient operator, {Zn}n∈[N ] is updated
by ∥sg[zn]− znq ∥22, and ∥zn − sg[znq ]∥22 is the “commitment loss”.
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2.2 Stage II: Latent Diffusion-Enhanced Prior Retrieval

To retrieve accurate HQ prior features from the codebook bank, we introduce
a latent diffusion strategy. As shown in Fig. 1b, this strategy employs a DM in
the latent space, which comprises two main processes: diffusion and denoising.

In the diffusion process, the encoder Evq from Stage I is used to extract
ground-truth prior features zn from real HQ images Inhq. These features are then
corrupted by noise to produce noisy latent features ẑnT , as described by:

ẑnT =
√
αT z

n +
√
1− αT ϵ, (4)

where T is the total number of iterations, ϵ ∼ N (0, I), αt = 1 − βt, and
αT =

∏T
t=1 αt. The noise variance is controlled by β1:T ∈ (0, 1).

The reverse process begins at the T th time step and iteratively refines the
noisy features ẑnT to estimate the potential prior features ẑn. Following the paper
[21], we design a condition encoder Elq to extracts LQ degraded features ĉn from
LQ images Inlq as conditions. A denoising network ϵθ subsequently predicts the
noise ϵ conditioned on ĉn at each step. The reverse step from ẑnt to ẑnt−1 is:

ẑnt−1 =
1

√
αt

(
ẑnt − 1− αt√

1− αt
ϵθ(ẑ

n
t , ĉ

n, t)

)
+

√
1− αtϵt, (5)

where ϵt ∼ N (0, I). After T iterations of denoising, the DM generates the
estimated features ẑn. This iterative refinement process allows ẑn to better align
with the correct prior features zn. The estimated features ẑn can then be further
quantized using {Zn}n∈[N ] to retrieve the HQ features ẑnq as VQ codebook priors.

During inference, only the reverse process is performed, with the noisy latent
features ẑT initialized from randomly sampled Gaussian noise.

Training Strategy. Latent diffusion requires fewer iterations and smaller sizes
compared to traditional DMs [5]. Following the paper [21], we remove the vari-
ance estimation and jointly optimize DM with Elq:

Lstage2 = ∥zn − ẑn∥1. (6)

2.3 Stage III: Codebook Prior-Guided Restoration

Stage I and Stage II incur a one-time cost and can provide guidance for training
any restoration network. After retrieving HQ prior features ẑnq from the code-
book bank {Zn}n∈[N ], we employ the decoder Gvq to decode them into restora-
tion references Inref . HQ references Inref , derived exclusively from the codebook
Zn, highlight task-specific HQ details for LQ images Inlq as guidance. To inte-
grate Inref , we concatenate Inref and Inlq along the channel dimension and input
them into an restoration backbone to recover the final outputs Înhq. Notably, this
integration step is flexible, and any well-designed fusion method could further
enhance performance.
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Training Strategy. We use the L1 loss for training, as it is more robust to
outliers and better preserves structural details:

Lstage3 = ∥Inhq − Înhq∥1. (7)

2.4 Task-aware Global Routing Strategy

To mitigate task interference [29], we adopt a task-aware global routing strategy
(TARS) that assigns different tasks to specialized expert networks. In contrast
to AMIR [22], we employs global routing to prevent expert overuse. As shown
in Fig. 1f and Fig. 1g, we use a mixture-of-expert [18] architecture to construct
task-aware global routing modules (TARMs) and insert them into DiffCode. For
a given LQ image, a task-aware classifier first extracts its task-aware information
to generate the global gating vector V ∈ RE , where E denotes the number of
experts in TARM. Then, this vector V dynamically selects expert networks in
TARMs for customized feature processing. TARM is formulated as follows:

fout =
∑
e∈S

weAe(fin), we =
exp(Ve)∑
s∈S exp(Vs)

, S = TopK(V, k). (8)

Here, fout and fin are the input and output of TARM. Ae represents the eth

expert network, and k controls the number of activated experts in TARM.

Table 1. Quantitative comparison across three tasks, bold indicates best results.

Method MRI Super-resolution CT Denoising PET Synthesis Average

PSNR↑ SSIM↑ RMSE↓ PSNR↑ SSIM↑ RMSE↓ PSNR↑ SSIM↑ RMSE↓ PSNR↑ SSIM↑ RMSE↓

MHCA 30.1468 0.9149 35.5605 33.9474 0.9062 8.2921 36.8645 0.9420 0.0894 33.6529 0.9210 14.6473
Spach Transformer 30.6139 0.9214 33.8595 34.0187 0.9082 8.2354 37.1546 0.9447 0.0865 33.9291 0.9248 14.0605

DenoMamba 31.3032 0.9307 31.4517 34.1900 0.9087 8.0780 37.1133 0.9454 0.0871 34.2022 0.9283 13.2056

MPRNet 31.0037 0.9293 32.4893 34.0445 0.9091 8.2138 37.2079 0.9451 0.0860 34.0854 0.9278 13.5964
Restormer 31.3467 0.9304 31.3442 34.1855 0.9088 8.0814 37.0901 0.9454 0.0872 34.2074 0.9282 13.1709

DiffIR 31.4398 0.9323 30.9636 34.1933 0.9088 8.0756 37.0980 0.9468 0.0869 34.2437 0.9293 13.0420

AirNet 31.1200 0.9276 32.0352 34.2043 0.9094 8.0626 37.0941 0.9439 0.0870 34.1395 0.9270 13.3949
DRMC 29.3003 0.8990 39.1995 33.7899 0.9042 8.4506 36.1101 0.9371 0.0973 33.0668 0.9134 15.9158
IDR 31.2882 0.9302 31.5034 34.1596 0.9086 8.1073 37.1098 0.9464 0.0871 34.1859 0.9284 13.2326
NDR 31.4606 0.9334 30.9891 34.1923 0.9089 8.0760 37.2014 0.9464 0.0866 34.2848 0.9296 13.0506
AMIR 31.6861 0.9352 30.1821 34.2485 0.9093 8.0267 37.1408 0.9459 0.0872 34.3585 0.9301 12.7653

DiffCode 32.0009 0.9397 29.1957 34.4605 0.9121 7.8381 37.3945 0.9489 0.0845 34.6186 0.9336 12.3728

3 Experiment

3.1 Dataset and Implementation

Dataset. (1) MRI Super-resolution: The IXI dataset [1] consists of 578
HQ T2 MRI scans, divided into 405/59/114 for training/validation/testing. For
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Fig. 2. Visual comparison between different methods across three MedIR tasks.

each scan, we extract 100 central 256×256 slices. LQ images are generated
using a 4× scaling factor following the paper [30]. (2) CT Denoising: The
LDCT dataset [15] provides paired standard-dose and quarter-dose CT scans.
We select 50 chest scans acquired from a Siemens scanner, divided into 40/5/5
for training/validation/testing, and extract 512×512 slices. (3) PET Synthe-
sis: A clinical dataset comprising 159 scans is split into 120/10/29 for train-
ing/validation/testing. For each scan, we extract 192×400 slices. Following the
paper [9], LQ images are generated by subsampling full scans with a 12× dose
reduction, and reconstructed using the standard OSEM method [7].

Implementation. The encoders and decoders utilize [2, 2, 4, 4] NAF blocks [2],
with channels [64, 128, 256, 256] at each feature level. NAF block [2] is chosen to
boost efficiency. Following the paper [10], each codebook in the codebook bank
contains 8192 code items of dimension 256, with the RQ performing 8 iterations.
Following the paper [21], the DM comprises 5 linear layers, with the total time
steps set to 8 and βt in Eq.(4) increasing linearly from 0.1 to 0.99. The TARM
employs 4 experts followed by AMIR [22], with the expert activation number set
to 1. Training uses cropped 128×128 patches with a batch size of 8. The model
is optimized using the Adam optimizer, starting with a learning rate of 2e-4
and decaying to 1e-6 via cosine annealing. All experiments are conducted using
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LQ V1 V2

V3 DiffCode HQMRI Case

LQ V1 V2

V3 DiffCode HQCT Case

LQ V1 V2

V3 DiffCode HQPET Case

Fig. 3. Visual comparison for component analysis of DiffCode across three tasks. The
configurations of V1, V2 and V3 are presented in Tab. 2 (a).

the PyTorch framework on NVIDIA A100 GPUs. Quantitative performance is
evaluated using PSNR, SSIM, and RMSE.

Table 2. (a) Component analysis of DiffCode, CB refers to the codebook bank, LD
refers to latent diffusion. (b) Ablation study on the codebook type and expert activation
number in TARS. Performance is the average of three tasks, bold indicates best results.

(a) Component Analysis

Method Configuration Performance

CB LD TARS PSNR↑ SSIM↑ RMSE↓

V1 34.2057 0.9285 13.2157
V2 ✓ 34.4079 0.9305 13.1176
V3 ✓ ✓ 34.5273 0.9323 12.8168

DiffCode ✓ ✓ ✓ 34.6186 0.9336 12.3728

(b) Ablation on Codebook and TARS

TARS Codebook Performance

Single Bank PSNR↑ SSIM↑ RMSE↓

3 ✓ 34.5425 0.9329 12.6693
2 ✓ 34.5687 0.9330 12.7238
1 ✓ 34.5666 0.9332 12.6825
1 ✓ 34.6186 0.9336 12.3728

3.2 Comparison and Ablation Study

Comparison. We compare DiffCode against three task-specific MedIR meth-
ods: MHCA [4], Spach Transformer [8], DenoMamba [16]; three general image
restoration methods: MPRNet [26], Restormer [25], DiffIR [21]; and five all-in-
one image restoration methods: AirNet [11], DRMC [23], IDR [27], NDR [24],
AMIR [22]. All competing methods are trained in an all-in-one setting. As ob-
served in Tab. 1 and Fig. 2, DiffCode outperforms all competing methods in both
quantitative metrics and visual quality, demonstrating superior performance.

Ablation Study. The component analysis in Tab. 2a and Fig. 3 confirms the
necessity of three core components: the codebook bank, the latent diffusion strat-
egy, and TARS. Comparing V2 to V1, TARS assigns tasks to specialized experts,
mitigating task interference for better performance. Integrating the codebook
bank into V3 provides LQ images with HQ priors, further boosting restoration
quality. Finally, DiffCode surpasses V3 by introducing a latent diffusion strategy
that enhances prior retrieval during restoration. Moreover, the ablation study in
Tab. 2b highlights two critical insights: First, the codebook bank outperforms
a single-codebook design by encoding task-specific priors. Second, optimal per-
formance emerges when TARS activates individual experts for each task. This
is likely because medical images from different tasks exhibit distinct statistical
distributions, which may cause task interference when the same expert is shared.
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4 Conclusion

In this paper, we propose a latent diffusion-enhanced VQ codebook prior and de-
velop DiffCode, a novel framework that leverages this prior for all-in-one MedIR.
By constructing a task-adaptive codebook bank that integrates task-specific HQ
prior features across different tasks, DiffCode provides customized compensation
for the diverse information losses associated with each task. Moreover, DiffCode
introduces a latent diffusion strategy to enhance prior retrieval during restora-
tion, iteratively refining the latent feature distribution to estimate more accurate
HQ prior features for LQ images. Experimental results demonstrate the superi-
ority of DiffCode across three MedIR tasks. In the future, we will explore the
effectiveness of the proposed DiffCode as more MedIR tasks are involved.
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