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Abstract. Positron Emission Tomography (PET) is an advanced nu-
clear medicine imaging technique widely used in the diagnosis and treat-
ment of oncology and neurological diseases. However, PET images suffer
from high noise levels due to statistical fluctuations and physical degra-
dation factors during image acquisition. Recently, deep learning-based
denoising methods have shown great performance for PET image quality
enhancement. Most of these methods attempt to incorporate high-quality
anatomical image (such as CT or MR), as network input to provide prior
information into the PET denoising process. However, directly using CT
or MR image as network input has limited effectiveness and lacks in-
terpretability due to the significant differences between two modalities.
Exploring how to make better use of anatomical prior remains a valu-
able research direction. In this study, we proposed an unsupervised PET
image denoising framework that leverages the Bowsher prior to achiev-
ing cross-modality fusion and anatomical information extraction. Specif-
ically, we compute the Bowsher prior using the denoised result from the
Conditional Deep Image Prior (CDIP) method and the corresponding
MR image. The Bowsher prior and MR image are concatenated along
the channel dimension and then fed into a designed Spatial Attention
Network (SA-Net) to enhance PET image quality. Experiments on both
simulation and clinical datasets demonstrated that the proposed frame-
work can effectively utilize Bowsher prior to generating high-quality PET
image.

Keywords: PET image denoising - Anatomical prior - Unsupervised
deep learning.

1 Introduction

Positron Emission Tomography (PET) is an effective nuclear medicine imaging
technique which can quantify physiological metabolic processes by tracking the
distribution of radioactive tracers in the body. It has wide applications in on-
cology [8], cardiology [20], and neurology [2I]. However, due to the stochastic
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decay process of radiotracers and limitations of imaging equipment, PET image
is inherently affected by statistical fluctuations and physical degradation factors
[1]. As a result, PET image suffer from the low signal-to-noise ratio (SNR) which
affects its detection and quantification accuracy, especially for small structures.
Furthermore, to reduce patient radiation exposure during medical procedures,
researchers are actively developing low-dose and short-duration PET imaging
protocols [26], these approaches further amplify noise levels, making it increas-
ingly challenging to obtain high-quality PET image [19].

In recent years, numerous PET enhancement algorithms have been devel-
oped to improve PET image quality. Early approaches, such as Gaussian fil-
tering [12], adaptive diffusion filtering [22], bilateral filtering [10], guided filter-
ing [25], non-local means (NLM) filtering [7], and block-matching 4D filtering
(BM4D) [15], are robust but often suppress high-frequency details, resulting in
over-smoothed images. With the rapid advancement of deep learning, end-to-end
PET enhancement networks have emerged, achieving significant performance im-
provements and showing great potential [ITIT4/4]. Additionally, many methods
leverage anatomical images from other modalities (e.g., CT and MR) as prior
information to further enhance the denoising performance [T6/17/3].

Conditional Deep Image Prior (CDIP) [§] is a representative method that
utilizes patient’s high-quality anatomical image (CT or MR) as input to the
deep learning network and noisy PET image as training label. By leveraging the
network’s architecture and prior anatomical information, the model learns in-
trinsic structural features from prior image and generates enhanced PET image.
This approach eliminates the need for paired data, which is typically required
by deep learning-based denoising methods. However, since the training label is
noisy image, the selection of network training stop condition is essential to pre-
vent overfitting or underfitting, both of which will degrade output image quality.

Furthermore, directly incorporating CT or MR image as network input to
provide anatomical prior for PET denoising has limited effectiveness and lacks in-
terpretability due to the inherent differences between two modalities. To address
this challenge, we propose the Bowsher prior enhanced unsupervised PET de-
noising framework. Specifically, we computed the Bowsher prior based on CDIP
denoising result and corresponding MR image, and the proposed Spatial Atten-
tion Network (SA-Net) leverages the Bowsher prior and MR image as network
inputs, with noisy PET image as training label. This approach generates high-
quality PET image without clean reference or predefined stop condition. Our
work has three main contributions:

— Incorporating the Bowsher prior into PET denoising framework. The Bow-
sher prior technique aims to promote consistency among anatomically simi-
lar PET voxels through MR-derived regularization constraint [24], improving
boundary clarity and structural fidelity in PET image while addressing de-
noising interpretability through multimodal information fusion.

— Proposing an unsupervised PET enhancement network (SA-Net). SA-Net
utilizes a specially designed network architecture with reduced parameter
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Fig. 1. Overview of the proposed framework. (a) The main structures of the proposed
framework and the relationship between them. (b) Calculation of the Bowsher prior.
(¢) The composition of Spatial Attention Network.

capacity, effectively limiting noise overfitting during training and addressing
the stop condition problem inherent in the CDIP method.

— Achieving superior denoising performance on both simulation and clinical
datasets, outperforming existing unsupervised denoising approaches in quan-
titative and qualitative analysis.

2 Methods

The proposed framework is illustrated in Fig. a). CDIP serves as the critical
initial denoiser, preventing the propagation of PET noise to the Bowsher prior
and SA-Net. CDIP uses the MR image as input to UNet and the noisy PET image
as the training label for unsupervised denoising (as we faithfully reproduce the
method described in [5], CDIP details are omitted here). The denoised result and
corresponding MR image are then used to compute the Bowsher prior image.
Bowsher prior bridges the CDIP and SA-Net training processes with patch-based
image fusion capability. Subsequently, the Bowsher prior and the MR image are
concatenated along the channel dimension and fed as input into SA-Net, with the
noisy PET image as the training label. The specially designed SA-Net effectively
limits noise overfitting during training and mitigates the stop problem of CDIP.
The following sections detail the computation of the Bowsher prior and the
structure of SA-Net.

2.1 Bowsher prior Computation

The Bowsher prior [2] incorporates an anatomy-based regularization term into
the PET reconstruction process, encouraging adjacent voxels with similar sig-
nals in the anatomical image to maintain smoothness in the reconstructed PET
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image. In this study, we compute the Bowsher prior using the denoised result
obtained from the CDIP method and the corresponding MR image, as shown
in Fig. (b) To avoid the computationally expensive PET image reconstruction
process, we directly compute the Bowsher prior based on 3D image patches from
the CDIP result and MR image, which can be expressed as:

y; = Softmax ([w]‘i |z — ZJHiV:l) -Gy, (1)

where z represents the MR image, and z; corresponds to the j-th voxel of the MR
image. G; denotes a sliding patch of size 3 x 1 x [ extracted from the CDIP image,
centered at j-th voxel and containing N voxels. We compute intensity differences
between each voxel and the central voxel within the MR image sliding patch.
These differences are then thresholded by w;; according to their magnitude and
then transformed into a probability patch via the Softmax function. Finally, the
probability patch is multiplied with the corresponding CDIP image patch to
obtain the value at j-th voxel in the Bowsher prior image.

The weight w;; acts as a thresholding function to exclude voxels that signif-
icantly differ from the central voxel. It is determined by the intensity difference
between the voxel in the patch and the central voxel, expressed as:

—1 1f ozl
wji = { e (2)

—oo otherwise

where « is a scaling factor that determines the thresholding mechanism. If the
ratio of the difference to the center value is smaller than o (a<1), the correspond-
ing weight will be set to -1, if not the weight will be set to negative infinity. In the
Softmax operation, voxels with weights of -1 are assigned probabilities propor-
tional to their intensity differences, with smaller differences resulting in higher
probability values. At the same time, voxels with weights of negative infinity are
excluded from the Softmax process and assigned a value of 0 in the probability
patch. This promotes smoothness among anatomically consistent voxels in PET
image.

2.2 Spatial Attention Network

After computing the Bowsher prior image, we concatenate it with the MR image
along the channel dimension to create a multi-channel input. This combined
input is then fed into our proposed unsupervised PET enhancement network,
SA-Net. The noisy PET image act as the training label, and we utilize the Mean
Squared Error (MSE) loss for the unsupervised image enhancement process. The
architecture of SA-Net is depicted in Fig. [Ifc).

SA-Net is initially constructed by stacking k convolutional layers with a
kernel size of 3 x 3 x 3 resulting in a receptive field of (2k+1) x (2k+1) x (2k+1).
The features extracted by these layers are then further refined using a spatial
attention mechanism, which generates the final denoised output. The formulation
of the spatial attention mechanism is as follows:
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SA (f*) = ReLu (f* + ReLu ([Avg (f*) ,Max (f*)]) © f*), (3)

where f* represents the features extracted from the input image after k con-
volutional layers, Avg and Max represent the average and maximum along the
channel dimension operation, respectively.

During experiments, we observed that using noisy PET image as training
label leads the network to first fit the intensity distribution of the noisy data
to rapidly minimize MSE loss, followed by adapting to the noise distribution.
Networks with larger parameter capacities show a stronger tendency to overfit
noise. To mitigate this, SA-Net utilizes a stacked convolutional layer design to
restrict parameter capacity, thereby preventing noise overfitting during training
and eliminating the need for predefined stop condition.

2.3 Implementation Details

We validated the framework on simulation and clinical datasets with distinct
configurations. The CDIP UNet used a learning rate of 1 x 1073, trained for
3,000 epochs (simulation) and 2,000 epochs (clinical), the impact of varying
CDIP denoising performance is further analyzed in Section 3.2. For Bowsher
prior computation, patch sizes [ were 5 (a = 0.1) and 11 (o = 0.2) for simulation
and clinical data respectively. SA-Net employed & = 2 (simulation) and & = 3
(clinical) convolutional layers, optimized via Adam (Ir = 1x10~3) with matching
epoch numbers.

All implementations used PyTorch on an NVIDIA RTX 4090 GPU. Bowsher
prior computation required 5-7 seconds, while SA-Net training completed in 1.5
minutes (simulation) and 10 minutes (clinical).

3 Experiments

3.1 Datasets

In this study, we evaluated the proposed method on both simulation and clin-
ical datasets. For the simulation study, noiseless PET images were generated
using 20 normal brain anatomical models from BrainWeb [6]. To simulate le-
sions, abnormal uptake points were added to the PET images. These images
were forward-projected to generate sinogram data, with Poisson noise added at
a total count of 1.5 x 107. The simulation PET images with lesions (matrix
size, 125 x 125 x 105; voxel spacing, 1 x 1 x 1mm?) were reconstructed using
the Maximum Likelihood Expectation Maximization (MLEM) algorithm with
40 iterations.

The clinical dataset was obtained from OpenNeuro [I8] including PET/MR
data from 30 participants. All participants were scanned with Siemens Biograph
mMR 3T PET-MR scanner using '8F-FDG tracer. The PET image were ex-
tracted from the last 5-minute frames of a 40-minute scan, with an average
intravenous dose of 184 MBq (matrix size, 256 x 256 x 256; voxel sapcing,
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Fig. 2. The denoised simulation images using different methods.
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Fig. 3. The denoised clinical images using different methods.

1.043 x 1.043 x 1.015mm?®). Reconstruction was performed using the ordered
subset expectation maximization (OSEM) algorithm with 14 subsets and 4 it-
erations. The reconstructed PET images were subsequently aligned with the
corresponding T1-weighted MR images using the ANTs toolkit [23].

For the simulation dataset, we took the noiseless PET images as reference
images to compute the peak signal-to-noise ratio (PSNR) and structural sim-
ilarity index measure (SSIM) as quantitative metrics. For the clinical dataset,
we calculated the contrast-to-noise ratio ( CNR) and CNR improvement ratio
based on the noisy PET image for quantitative analysis.

3.2 Comparison experiments

To validate the effectiveness of the proposed framework, we compared its denois-
ing performance with Gaussian filtering[12], BM4D[I5], NLM[7], and CDIP[5]
techniques. The qualitative and quantitative results on both simulation and clin-
ical datasets are presented in Table [I] and Fig. 2] and [3]
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Table 1. Quantitative results of the comparative experiments on the simulation and
clinical datasets.

Method Simulation Dataset Clinical Dataset
PSNR [dB] SSIM 1+ |CNR Improvement Ratio 1

Original 28.316+0.050 0.844+0.002 (Baseline)
Gaussian [12]| 29.6134+0.032 0.86740.002 30.02%+15.10%
BM4D [15] 29.506£0.042 0.858+0.001 54.83%427.75%
NLM [7] 29.287+0.031 0.865+0.001 49.79%+31.19%
CDIP [5] 30.052+0.012 0.8984+0.001 106.14%+38.33%
Proposed (31.147+0.030 0.912+0.001 147.79%+41.15%

Quantitative Comparison: Asshown in Table[T] the proposed method achieves
the highest PSNR and SSIM on the simulation dataset, along with the highest
average CNR improvement ratio on the clinical dataset. The Wilcoxon rank
sum test results proved that our method was significantly better than Gaussian
filtering, NLM, BM4D and CDIP in quantitative metrics (p<0.001 for all tests).

Qualitative Comparison: Fig. 2| and Fig. |3| provide visual comparisons for
the simulation and clinical datasets. Compared to methods such as Gaussian
filtering, BM4D, and NLM, the proposed method generates image with signif-
icantly reduced noise and enhanced structural clarity. In contrast to the CDIP
method, our approach recovers richer textural details and sharper cortical struc-
tures, closely aligning with the anatomical features observed in the MR image.
These results demonstrate that our method more effectively leverages anatomical
information to enhance PET image denoising performance.

3.3 Ablation experiments

To validate the effectiveness of the proposed framework, we conducted the fol-
lowing ablation experiments: 1) Calculate the Bowsher prior using CDIP results
under both overfitting and underfitting conditions, along with the noisy PET
images (without CDIP). 2) Use the Bowsher prior image alone (without MR im-
age) as the input to SA-Net. 3) Replace SA-Net with UNet as the enhancement
network. 4) Use the Bowsher prior image computed from the noisy PET image
to replace the MR image as prior image for the CDIP method.

The quantitative and qualitative results of these ablation studies are pre-
sented in Table 2| and Fig. @] Based on these results, we draw the following
observations:

1) The proposed framework is robust to CDIP’s denoising performance. SA-
Net produces clean PET images of comparable quality regardless of whether
CDIP overfits or underfits. However, CDIP remains crucial; its omission intro-
duces residual noise and artifacts in the results. 2) Using only the Bowsher prior
image as input degrades the output image quality. This demonstrates that the
Bowsher prior alone provides insufficient anatomical guidance. 3) Replacing SA-
Net with UNet significantly reduces denoising performance. UNet’s extensive
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Fig. 4. Simulation (up) and clinical (down) results of ablation experiments.

Table 2. Quantitative results of the ablation experiments on the simulation dataset,
in terms of PSNR and SSIM.

Method PSNR [dB]| 1 [SSIM *t

Prior from CDIP (overfit) [31.0704+0.052 [0.910+0.001
Prior from CDIP (underfit)|31.1394+0.052 [0.9114+0.001
Prior from noisy PET 31.099+0.047 ]0.909+0.001
SA-Net input without MR |30.8314+0.054 |0.901+0.001
UNet replace SA-Net 30.2394+0.296 [0.89440.004
CDIP (prior replace MR) [30.2734+0.112 {0.891+0.002
Proposed 31.147+0.030({0.912+0.001

parameter capacity, combined with supplementary information from the Bow-
sher prior, increases its tendency to overfit noise in the noisy PET image. 4)
Using the Bowsher prior computed from the noisy PET image (instead of the
MR image) to provide anatomical guidance for CDIP increases the network’s sus-
ceptibility to fitting noise. This indicates that the Bowsher prior cannot provide
superior anatomical information compared to MR images.

4 Conclusion and Limitations

In this study, we proposed an unsupervised PET image denoising framework,
demonstrating its superior performance on both simulation and clinical PET/MR
datasets. The framework innovatively incorporates the Bowsher prior into the
PET denoising process, leveraging its excellent image fusion capability to in-
tegrate the denoised results from the CDIP method with MR images, which
effectively utilizes the anatomical structural information from MR images to en-
hance PET denoising. Furthermore, the proposed SA-Net significantly improves
the quality of the Bowsher prior image and maintains robustness to the CDIP
denoising results, thereby addressing CDIP’s inherent dependence on training-
stopping criteria. Comparative experiments (against Gaussian filtering, NLM,
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BM4D, and CDIP) and ablation studies confirm that the proposed framework
effectively integrates anatomical information to enhance PET image denoising
performance.

While Deep Image Prior (DIP)-based denoising methods demonstrate ef-
fectiveness in preserving subtle pathological features during denoising [9IT3],
anatomical image-guided PET denoising approaches remain susceptible to po-
tential misregistration. Simulation experiments confirm that the proposed method
can successfully reconstruct simulated lesions in PET image despite the absence
of MR visible pathology (Fig.[2). This capability suggests inherent robustness of
the proposed framework against to moderate misregistration. Future work will
rigorously evaluate the method’s robustness to misregistration and explore its
applicability to multi-modal datasets, such as PET/CT.
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