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Abstract. Magnetic resonance imaging (MRI) enhanced by the gado-
linium-based contrast agents (GBCAs) is crucial in the assessment and
management of cancer. However, the use of GBCAs introduces additional
costs and raises potential safety concerns, including the risk of gadolinium
accumulation in brain. Several generative learning methods based on
GANs and diffusion models have been proposed to generate contrast-
enhanced MRI from non-contrast-enhanced MRI. However, GANs face
challenges such as gradient vanishing and mode collapse. Diffusion models
also face several challenges, such as generation instability and long sam-
pling times. In this paper, we propose a controllable flow matching (CFM)
model for efficient synthesis of 3D contrast-enhanced brain MRI with
fine-grained details of targets of interests. CFM adopts a straight-line
generation path, enabling the generation of images in a single step. We
design a multi-stage training strategy integrating controllable constraints
to ensure that such a single-step sampling generating contrast-enhanced
MRI meet specific controllable conditions. Our CFM model has been
evaluated on both the BraTS2023 and an in-house datasets. Experimental
results demonstrate that CFM led to state-of-the-art image generation
and tumor delineation performance with promising generalizability. Our
codes can be found at https://github.com/ladderlab-xjtu/CFM.

Keywords: Contrast-Enhanced Brain MRI Synthesis · Flow Matching ·
One-Step Generation · Controllable Generation.
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1 Introduction

Magnetic resonance imaging (MRI) enhanced by the gadolinium-based contrast
agents (GBCAs) is crucial for cancer evaluation and management [14]. For
instance, contrast-enhanced T1-weighted (T1ce) MRI provides sharp tumor
boundary of glioma and clearly differentiates active tumor regions from necrotic
tissue. However, GBCAs injections, especially when with multiple repetitions,
increase scanning costs and raise safety concerns, such as gadolinium depositions
in the brain [3]. To maintain clinical benefits while minimizing risks, developing
alternative techniques for achieving similar imaging enhancement with reduced
or no GBCAs is of significant practical value.

To this end, various generative learning methods have been proposed for
synthesizing contrast-enhanced MRI from non-contrast images. While generative
adversarial networks (GANs) [6,20] face challenges like gradient vanishing and
mode collapse, recent research has shifted toward diffusion models due to their
effectiveness [5,16]. For instance, cross-conditioned diffusion models [18] enable
single-step generation, and adaptive latent diffusion models (LDMs) [9] facilitate
image transformation in latent space. Controllable frameworks like ControlNet
[19] and ControlNet++ [10] have also been explored for targeted generation.
However, diffusion models struggle with long sampling and inference times as
well as associated error accumulation in 3D scan synthesis with fine-grained
details. As an efficient and flexible alternative, flow matching (FM) models
[11,12], which leverage ordinary differential equations (ODEs) for deterministic
cross-distribution mapping, offer stable training, fewer sampling steps, and one-
step generation. Despite their success in natural image generation, FM models
still face limitations in 3D brain MRI synthesis, particularly in image detail and
training efficiency.

In this paper, we propose a controllable flow matching (CFM) model
for high-fidelity synthesis of 3D contrast-enhanced brain MRI, with a focus
on detailed clinical targets such as glioma lesions. Our work makes three key
contributions:

– Our CFM features a straight-line path model, enabling efficient one-step
sampling for 3D medical image translation.

– Our CFM can flexibly integrate customized constraints, such as precise 3D
tumor delineation, into training to ensure controllable translation that focuses
on clinical targets.

– A multi-stage training strategy enhances the efficiency of CFM, achieving
lesion-aware, controllable image generation.

2 Preliminaries

2.1 Flow Matching

Given two probability distributions x0 ∼ p0 and x1 ∼ p1,with their correspond-
ing samples Z0 and Z1, FM constructs a mapping between two probability
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distributions through an ODE-based continuous motion system:

d

dt
Zt = u(Zt, t), ∀t ∈ [0, 1], (1)

where Zt is a point on the path from Z0 to Z1, corresponding to time t, and u is
the velocity vector field at the point Zt. As t progresses from 0 to 1, Z0 moves
along the velocity vector field u calculated based on Eq.(1), reaching Z1. The
optimization objective in FM is defined as:

min

∫ 1

0

EZ0∼p0,Z1∼p1

[
∥u(Zt)− v(Zt, t)∥2

]
dt, (2)

where v(·, ·) is a velocity prediction neural network. Based on Eq.(2), FM optimizes
the v using paired sampled data from p0 and p1. Detailed formulas and proofs
can be found in relevant flow matching papers[11,12].

2.2 Straight-Line Path

In FM, the straight-line path is considered as the optimal transport path, based
on which we formulate the mapping from the source domain to the target domain.
Suppose we have samples X0 ∼ π0 and X1 ∼ π1 from two distributions(e.g.,
T1W and T1ce MRI, respectively), then the ODE expression for the straight-line
path is given by:

d

dt
Xt = X1 −X0,∀t ∈ [0, 1], where Xt = tX1 + (1− t)X0. (3)

The FM with a straight-line path is illustrated in Fig. 1.(A). According to Eq.(2),
the FM optimization objective can be specified as:

min

∫ 1

0

EX0∼π0,X1∼π1

[
∥(X1 −X0)− v(Xt, t)∥2

]
dt. (4)

In the actual training process of this paper, the loss function for predicting
velocity can be set as:

Lv = Lmse(X1 −X0, vθ(tX1 + (1− t)X0, t)), with t ∼ Uniform([0, 1]), (5)

where vθ(·, ·) is a velocity prediction network, parameterized by θ. X1 − X0

represents the theoretically constant velocity v, which serves as the optimization
target for vθ(·, ·). During training, X0 and X1 are paired images from two different
modalities, and t is sampled uniformly between [0, 1] for each training step.

Since the path is a straight line, the velocity does not change with t. During
the sampling phase for inference, we can directly predict X1 from X0. Such an
efficient one-step generation is as:

X1 = X0 + vθ(X0, 0). (6)
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Fig. 1. (A) illustrates the generation process of flow matching along a straight-line path.
(B) illustrates how the velocity loss and segmentation loss are calculated during the
training phase. These two losses are used to optimize the CFM model. (C) illustrates
the sampling phase, where images are generated in one step. Finally, segmentation
labels are obtained from the generated images, achieving controllable generation.

3 Controllable Flow Matching

3.1 Controllable Generation

In this paper, our CFM extends the original FM for 3D T1w-to-T1ce brain
MRI translation, by leveraging the accurate segmentation of tumor lesions as
the controllable constraints to enhance the fine-grained glioma details in the
generated T1ce images.

Specifically, in the training phase as shown in Fig. 1.(B), we generate a
synthetic image X̂1 via a one-step sampling in terms of the image Xt and the
predicted velocity vθ(Xt, t), since the velocity does not change with t:

X1 ≈ X̂1 = Xt + (1− t)vθ(Xt, t). (7)

For controllable generation of T1ce images with fine-grained details of glioma,
we integrate a supplementary tumor segmentation task into the training procedure.
It provides key constraints to enhance the synthetic quality, considering that
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the high-fidelity imaging of glioma details is the precondition for its delineation.
Specifically, a fundamental Dice segmentation loss is employed, such as:

Lseg = Ldice(Ypre(X̂1), Yseg), with t ∼ Uniform([0, 1]), (8)

where Ypre(·) is a the pre-trained segmentation model, and Yseg represents the
ground truth segmentation labels.

After training, we adopt a one-step generation strategy along the straight-line
path to get the synthetic T1ce image by our CFM, as shown in Eq.(6). Finally,
the generated medical images can be passed through the pre-trained segmentation
model to obtain the annotations of the clinical target. The entire sampling process
is illustrated in Fig. 1.(C), where the segmentation masks are obtained from the
generated T1ce images.

3.2 Multi-Stage Training

The details of the multi-stage training algorithm for our proposed CFM are
shown in Algorithm 1, where Tseg and Tdistill are measured in epochs. In the first
stage, only the velocity loss is added to ensure the generation of approximate
target-domain images. In the second stage, the segmentation loss is included
and combined with the velocity loss, jointly optimizing vθ to ensure controllable
generation. In the third stage, we set the constant to 0, which is referred to as
the distillation phase [12]. By focusing on training the model at critical moments,
this stage is critical in enhancing the synthetic details by one-step sampling
generation in inference.

Algorithm 1 Controllable Flow Matching
Input: Training Data (X0, X1, Yseg), Tseg, Tdistill.
Stage 1: T < Tseg < Tdistill.

Training: Lv = Lmse(X1 −X0, vθ(tX1 + (1− t)X0, t)), with t ∼ Uniform([0, 1]).
Stage 2: Tseg < T < Tdistill.

Training: L = Lv + Lseg

Lv = Lmse(X1 −X0, vθ(tX1 + (1− t)X0, t)), with t ∼ Uniform([0, 1]).
Lseg = Ldice(Ypre(Xt + (1− t)vθ(Xt, t)), Yseg), where Xt = tX1 + (1− t)X0.

Stage 3: Tdistill < T.
Training: L = Lv + Lseg

Lv = Lmse(X1 −X0, vθ(X0, 0)), with t = 0.
Lseg = Ldice(Ypre(X0 + vθ(X0, 0)), Yseg).

4 Experiments

4.1 Datasets and Implementation

BraTS2023 dataset This publicly accessible dataset [1,2,7,8,13] contains 1251
3D brain MRI images acquired from glioma patients. Each subject includes
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four types of MRI sequences: T1w, T1ce, T2w, and FLAIR, with ground-truth
annotations of tumor lesions. In our experiments, we selected the T1w and T1ce
MRIs, using T1w as the source domain and T1ce as the target domain. We
used the segmentation images of enhancing tumor (ET) and whole tumor (TC:
enhancing tumor plus necrotic tumor) as the controllable constraints. The data
was splitted into 3:1:1 for training/validation/testing.

In-house dataset The in-house dataset in this study consists of 73 paired
samples, each containing T1w and T1ce images. This dataset was not used during
the training phase but was exclusively used for testing the model. It differs
in equipment and scanning methods from BraTS2023, making it valuable for
assessing the model’s generalization ability.

Implementation details In the CFM model, the velocity prediction network
is a U-Net [15] with an attention module [17] added to the deepest layer, and
the pre-trained segmentation model used is SwinUNETR [4]. The parameters of
the SwinUNETR model are frozen during the training phase of the generation
model and are utilized during the testing phase to evaluate the segmentation
performance on the generated images. In the training process, the parameters
were set as Tseg = 20 epochs and Tdistill = 150 epochs. For 3D medical image
data, the input size is 160× 192× 96, ensuring that the input image includes the
majority of the brain and tumor regions. The model was trained on one NVIDIA
A6000 GPU with a unit batch size of 1, using the Adam optimizer with a learning
rate of 2e-5.

4.2 Results

Our CFM was comparted with two GAN-based generative models, i.e., Pix2Pix
[6] and CycleGAN [20], a transformer-based model SwinUNETR [4], a diffusion-
based models DDIM [16] and a controllable diffusion model ControlNet++ [10]
and the original FM model [11,12], which follows a straight-line path without
controllable constraints. The FM model also adopts the distillation strategy
outlined in Algorithm 1. These competing methods were reimplemented for 3D
image synthesis following the official source codes. All experimental environments
were kept the same for fair comparisons.

Generation Results The quantitative metrics for evaluating the generation
results are Structural Similarity Index (SSIM%), Peak Signal-to-Noise Ratio
(PSNR) and Mean Absolute Error (MAE). Average inference time per instan-
ce(second) is employed as a metric for assessing the model’s inference speed. As
shown in Table 1, our CFM model achieves optimal generative metrics on both
the BraTS2023 and in-house datasets. In the inference phase, to achieve better
generation results, we set the sampling steps of DDIM and ControlNet++ to 10.
As a one-step generation model, the inference time of CFM is significantly lower
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Table 1. Quantitative comparison on the BraTS2023 and In-house datasets

Datasets Methods SSIM↑ PSNR↑ MAE↓ Inference
Time↓

BraTS2023

Pix2Pix[6] 85.04 28.5777 0.0298 0.1997
CycleGAN[20] 85.78 28.6067 0.0290 0.2024
SwinUNETR[4] 84.86 28.0441 0.0322 0.2034

DDIM[16] 86.49 29.0958 0.0322 3.7511
Controlnet++[10] 85.41 28.4801 0.0303 3.7427

FM[11,12] 87.60 29.5386 0.0272 0.1421
Ours 87.65 29.5674 0.0271 0.1421

In-house

Pix2Pix[6] 81.23 27.7121 0.0358 0.2351
CycleGAN[20] 82.54 27.8499 0.0352 0.2471
SwinUNETR[4] 83.46 27.9946 0.0346 0.2217

DDIM[16] 81.14 27.5210 0.0358 4.3477
Controlnet++[10] 81.37 27.0894 0.0392 4.5413

FM[11,12] 83.82 27.9231 0.0343 0.1742
Ours 84.17 28.1270 0.0333 0.1742

Table 2. Quantitative Comparison of Segmentation Tasks in terms of Dice Score on
BraTS2023

Methods TC↑ ET↑ Avg↑

Pix2Pix[6] 0.4360 0.2317 0.3339
CycleGAN[20] 0.3796 0.1813 0.2805
SwinUNETR[4] 0.2759 0.1028 0.1893

DDIM[16] 0.6171 0.4330 0.5251
Controlnet++[10] 0.6636 0.4696 0.5667

FM[11,12] 0.6166 0.4409 0.5288
Ours 0.7115 0.5415 0.6265

T1_GT 0.5309 0.3934 0.4621
T1c_GT 0.9056 0.8788 0.8922

than that of DDIM and ControlNet++, which require multiple sampling steps.
Our CFM model shows significantly better generative metrics on the in-house
dataset compared to other models, indicating that CFM, through controllable
generation, focuses on important generative regions (tumor delineation) in the
external validation dataset, thereby demonstrating strong generalization ability.

Segmentation Results The segmentation results are evaluated using the Dice
score. Table 2 presents the segmentation performance of generated T1c images
using a pre-trained segmentation model. Our CFM model achieves optimal
performance in both TC and ET segmentation, demonstrating the superiority of
controllable generation. Although ControlNet++ also integrates segmentation
loss during training as a controllable generation model, the larger error in its
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Fig. 2. Visualization of generated 3D T1ce images: The first six rows represent results
from the BraTS2023 dataset, and the last three rows represent results from the in-house
dataset

single-step backpropagation leads to suboptimal segmentation results compared
to CFM.

Qualitative results As shown in Fig. 2, the T1ce images generated by CFM
with controllable constraints focus more on clinical targets, specifically the
clear distinction between active tumor regions and necrotic tissue. As shown in
the visualization results, diffusion models produce noisier outputs due to error
accumulation from multiple sampling steps. Fig. 3 demonstrates that the T1ce
images generated by CFM from T1 can produce more detailed segmentation
labels when processed through a pre-trained segmentation model, achieving the
clinical objective, without the GBCAs.

5 Conclusions

In this paper, we propose a controllable flow matching (CFM) method for
synthesizing 3D contrast-enhanced brain MRI. By setting the FM generation
path as a straight line, CFM enables one-step image generation. The model
incorporates controllable constraints for targeted clinical generation, specifically
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Fig. 3. Visualization of generated images for segmentation

generating T1ce images from T1w, making tumor regions easier to segment
without additional GBCAs. Future extensions could include more controllable
constraints or cyclic consistency to improve performance, showing CFM’s strong
scalability for various controllable generation tasks.
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