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Abstract. Understanding the organization of human brain networks
has become a central focus in neuroscience, particularly in the study
of functional connectivity, which plays a crucial role in diagnosing neu-
rological disorders. Advances in functional magnetic resonance imaging
and machine learning techniques have significantly improved brain net-
work analysis. However, traditional machine learning approaches struggle
to capture the complex relationships between brain regions, while deep
learning methods, particularly Transformer-based models, face compu-
tational challenges due to their quadratic complexity in long-sequence
modeling. To address these limitations, we propose a Core-Periphery
State-Space Model (CP-SSM), an innovative framework for functional
connectome classification. Specifically, we introduce Mamba, a selective
state-space model with linear complexity, to effectively capture long-
range dependencies in functional brain networks. Furthermore, inspired
by the core-periphery (CP) organization, a fundamental characteristic of
brain networks that enhances efficient information transmission, we de-
sign CP-MoE, a CP-guided Mixture-of-Experts that improves the repre-
sentation learning of brain connectivity patterns. We evaluate CP-SSM
on two benchmark fMRI datasets: ABIDE and ADNI. Experimental
results demonstrate that CP-SSM surpasses Transformer-based models
in classification performance while significantly reducing computational
complexity. These findings highlight the effectiveness and efficiency of
CP-SSM in modeling brain functional connectivity, offering a promis-
ing direction for neuroimaging-based neurological disease diagnosis. Our
code is available at https://github.com/mlnhengChen/cpssm
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1 Introduction

The vast assemblage of neurons in human brain forms a complex, interconnected
network that achieves a remarkable balance between regional specialization and
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global functional integration, enabling diverse cognitive and behavioral pro-
cesses [9]. Understanding the organization of these neural networks has become
a central focus of contemporary neuroscience. By studying and analyzing brain
networks, neuroscientists can gain deeper insights into the structural and func-
tional architecture of the human brain, as well as how network dynamics influ-
ence the onset, expression, and manifestation of neurological diseases [2/12]. Ad-
vancements in neuroimaging, particularly functional magnetic resonance imaging
(fMRI), have revolutionized brain network analysis by non-invasively assessing
intrinsic functional connectivity through blood oxygen level-dependent (BOLD)
signals [I0]. Functional connectivity (FC), measured as the correlation of BOLD
signals across brain regions, has been widely explored for diagnosing neurological
diseases and identifying potential biomarkers [I3]. Machine learning techniques
are commonly used to classify FC patterns, but traditional approaches strug-
gle to capture the intricate relationships between brain regions. Deep learning
has proven more effective in modeling brain functional connectivity [16/29J3T].
Notably, Transformer-based architectures, originally designed for natural lan-
guage processing, have gained traction in medical imaging due to their ability to
capture long-range dependencies. Recent studies show that Transformer models
significantly outperform other learning-based methods in classifying neurological
disorders [TIBIT7I2TI30].

Although existing methods can effectively model functional connectivity pat-
terns of the human brain and achieve competitive results in diagnosing neuro-
logical diseases such as Alzheimer’s disease (AD), they still have the following
shortcomings: First, existing works rely heavily on increasingly complex network
architectures, which not only lead to overfitting problems due to inductive bias,
but also hinder their application on long sequences by computational complexity
such as the quadratic computational cost associated with the attention mecha-
nism. These challenges have spurred interest in more computationally efficient
alternatives to Transformers, aiming to reduce complexity while preserving the
ability to capture long range dependencies and maintain strong representational
learning capabilities. Second, current network models often overlook the intrin-
sic characteristics of brain function during computational modeling, resulting
in suboptimal performance in brain network analysis. This gap underscores the
need for approaches that align more closely with the unique functional and struc-
tural properties of the brain.

In this paper, we address the aforementioned limitations by introducing a
core-periphery principle guided state-space model (CP-SSM) for functional con-
nectome classification. Specifically, 1) we introduce a highly promising long-
sequence modeling method with linear complexity based on a selective state
space model named Mamba [I1] to capture the functional connectivity relation-
ships between different brain regions and identify variations in functional brain
patterns across individuals. 2) Core-periphery (CP) organization is a ubiquitous
feature of the brain functional network in humans and other mammals. It has
been widely demonstrated to enhance the efficiency of information transmission
and communication in biological integration processes [7]. Drawing inspiration
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from this principle, we propose CP-MoE, which leverages CP organization to
guide the redesign of Mixture-of-Experts (MoE) model, thereby effectively en-
hancing the representation capabilities of the networks. 3) Experimental results
on the ABIDE and ADNI datasets demonstrate that the proposed method sur-
passes existing Transformer-based approaches while achieving lower computa-
tional complexity, highlighting its effectiveness and efficiency.

CP-SSM
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Fig. 1. Overall architecture of the proposed method. Our approach is founded on a
state-space model, with its key components comprising a Mamba block and a Core-
Periphery principle guided MoE.

2 Material and Method

The overall pipeline of the proposed method is shown in Fig. [l The FC ma-
trix X € RV*V(V is the number of ROIs), derived by calculating the Pearson
cross-correlation of the preprocessed BOLD signals across different brain re-
gions, is first processed through N CP-SSM blocks to generate the node-level
embedding representation Z € RV*V. Each CP-SSM block comprises two key
components: an SSM module and a CP-MoE block. Subsequently, the output is
passed through an Orthonormal Clustering Readout function [I5] to obtain the
graph-level embedding. The embedding is then fed into a fully connected layer,
with the final probability predictions generated through a softmax layer. The
model is trained using cross-entropy loss.
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2.1 Data Acquisition and Preprocessing

In this study, we evaluated the proposed method on two fMRI datasets, assess-
ing its performance in diagnosing two neurological conditions: autism spectrum
disorder (ASD) and mild cognitive impairment (MCI)—the prodromal stage of
AD. (a) Autism Brain Imaging Data Exchange (ABIDE) [5]: This dataset collects
resting-state fMRI data from 17 international sites. Based on the given quality
control scores, 1009 subjects (516 with ASD and 493 with NC) from 1,112 sub-
jects were selected. The dataset, preprocessed by the Configurable Pipeline for
the Analysis of Connectomes tool, underwent band-pass filtering (0.01 - 0.1Hz)
without global signal regression. The brain was parcellated using the Craddock
200 atlas [6]. (b) Alzheimer’s Disease Neuroimaging Initiative(ADNI) [I8]: 440
subjects(215 MCI, 225 NC) were selected based on quality control. Each sub-
ject’s data underwent the same standard preprocessing procedures as detailed
in [32]. The Destrieux Atlas was then applied for parcellation.

2.2 State Space Model for Functional Connectome Classification

A State Space Model (SSM) is commonly defined as a linear time-invariant
system that maps a one-dimensional input sequence x(t) € R to an output
response y(t) € R through an underlying latent state representation h(t) € RM,
as formalized in Eq.[1} where A € RM*M ' B ¢ RM*1 O ¢ R™*M and D € R!
are the weighting parameters.

B'(t) = Ah(t) + Bu(t), .
y(t) = Ch(t) + Du(t). W
Mamba [I1], a recently proposed variant of SSM, exhibits a remarkable capacity
for processing long sequential data with linear computational complexity, mak-
ing it highly efficient in modeling local interactions between adjacent nodes. In
this study, we propose utilizing Mamba modules to characterize brain network
connectivity patterns, enabling the capture of long-range dependencies across
brain regions that would otherwise be computationally prohibitive to model us-
ing self-attention mechanisms. The input functional connectivity matrix X first
undergoes Layer Normalization, producing X,,. Subsequently, X,, is processed
through a Mamba block, which consists of a linear layer, a SiLU [8] activation
function, a one-dimensional convolution layer, and an SSM layer [3]. The output
X’ € RV*V is then combined with X,, via element-wise addition to generate
the latent representation H € RY*V. This entire process can be mathematically
formulated as follows:

X' = SSM (conv(SiLU (linear(X,,)))

2
In our architecture, the Feedforward Network (FFN) commonly used in Trans-
formers is replaced with the proposed CP-MoE, a widely adopted approach in
the field of Sparse MoE (SMoE) [28].The details of CP-MoE will be introduced
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later. After normalization, the latent representation H is transformed into H,,.
Next, H,, is processed through CP-MoE, yielding H'. The output H'is then com-
bined with H,, via element-wise addition to generate the node-level embedding
Z. Since our model consists of N cascaded CP-SSM, this process is iteratively
repeated N times to obtain the final, more expressive node feature ZV ¢ RV *V.

2.3 Core-periphery Principle Guided Mixture-of-Experts

Mixture-of-Experts improves computational efficiency by integrating sparsity,
with SMoE further enhancing scalability by selectively activating relevant ex-
perts, reducing computational overhead. Core-periphery is a key structural fea-
ture of brain networks, where densely connected core nodes facilitate efficient
processing, while sparsely connected peripheral nodes support network integra-
tion [7U23l26]. This architecture enhances information transfer and biological
integration. Motivated by this principle, we aim to redesign the expert selection
mechanism in MoE under the guidance of CP principle. Specifically, we propose
leveraging the CP framework to guide the expert assignment process, ensuring a
more structured and biologically inspired approach to model the expert selection.

First, we construct a CP graph G to facilitate expert selection based on the
CP principle. To achieve this, we introduce a parameter core node rate r, which
partitions the graph’s nodes into two distinct sets: core nodes C and peripheral
nodes P. Notably, when r = 1, the resulting CP graph becomes fully connected.
Consistent with the definition in [25I27], G can be represented as:

Glij) = 1, if(i,j)eCxCor (i,j)eCxPor (i,j) € P xC
N0, i) ePxP
Thus, the Top-k expert selection of the router R(-) in MoE, determined by the

highest scores from softmax function with the learnable gating function g(-), can
be formally expressed as follows:

E

y:G.ZR(X)i 'fi(X) (3)
R(x) = Top-k(softmax(g(x)), k) (4)
Top-k(v, k) = {V’ v s inthe fop F

0, otherwise.

where x and y denote the input and output of MoE, respectively. E represents
the total number of experts, and ¢ denotes the index of a specific expert.

3 Experiments

3.1 Experiment Settings

We partition each dataset into 70% for training, 10% for validation, and 20%
for testing. For evaluation on the test set, we select the epoch that achieves
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the highest AUROC score on the validation set. We evaluate the performance
of our proposed method against several baseline approaches, including 3 tradi-
tional machine learning methods: support vector machine (SVM), random for-
est (RF), and XGBoost; 2 CNN/GNN-based methods: FBNETGEN [14] and
BrainNetCNN [16]; and 4 Transformer-based methods: VanillaTF [I5], Brain-
NetTF [I5], Com-BrainTF [I], and GBT [21].

Implementation details. Our method is configured with a state-space dimen-
sion of 16 in the Mamba block, an expansion factor of 2, two CP-SSM blocks
(N = 2), and a convolution kernel dimension of 4. The CP-MoE module consists
of 8 experts, utilizing a Top-4 selection strategy. For dataset-specific settings,
we set the core node rate to 0.2 for the ABIDE and 0.8 for ADNI. The CP-
SSM model is trained using the Adam optimizer with an initial learning rate of
10e-4 and a weight decay of 10e-4. A cosine annealing schedule is applied, grad-
ually reducing the learning rate from 10e-4 to 10e-5 without a warm-up phase.
Training is conducted over 200 epochs with a batch size of 64. All experiments
were performed on a PC equipped with an NVIDIA RTX 6000 Ada GPU and a
3.6-GHz Intel Core i7 processor.

Table 1. Performance comparison with different baselines on ADNI and ABIDE.

Methods Dataset: ABIDE Dataset: ADNI
) AUROC ACC SEN SPE AUROC ACC SEN SPE
SVM 70.4+5.2 [ 63.3+5.2 | 64.84+7.1 | 61.6+£7.0 | 65.1+8.2 | 61.5+4.4 | 51.2+7.9 | 69.7+8.2
RF 69.2+4.3 | 63.84+3.4 | 71.0+5.2 | 56.1£5.2 | 67.9+£3.8 | 63.94+1.2 | 55.9+4.7 | 71.4+4.5

XGBoost 71.24+4.4 | 63.4+5.1 | 68.6+4.9 | 57.8£9.1 | 65.4+5.0 | 62.7+1.1 | 61.5+6.0 | 63.8+6.2

FBNETGNN | 72.945.1 | 65.745.6 |64.3£10.6| 66.6+£8.2 | 69.1£7.9 | 66.3+3.9 | 66.7+8.1 | 65.7+8.4
BrainNetCNN| 73.24+3.0 | 66.6+4.0 | 64.6+£6.2 | 68.7+4.8 | 65.84+1.0 | 65.4+5.2 | 60.7£1.3 | 68.7+4.6

VanillaTF | 79.64+4.6 | 69.84+6.0 | 64.1£8.1 [76.44+9.1| 73.1+6.4 | 69.3+3.8 | 68.7+8.1 | 70.3+8.8
BrainNetTF | 79.1+£4.8 | 70.14£4.9 | 67.9£5.0 | 72.2+6.6 | 73.0+7.4 | 70.3£4.7 | 69.7£7.6 | 69.9£7.7
Com-BrainTF | 77.3+4.1 | 71.6+4.5 |75.1£11.9| 67.4£9.3 - - - -
GBT 78.3+4.1 | 71.5+5.8 |75.5+£14.7|68.24+12.8| 74.5+£5.5 | 71.14+3.2 | 69.0£7.8 | 73.6+5.1

CP-SSM 82.4+2.2(76.94+1.4|79.3+8.8| 74.5+8.4 |80.7+2.6|/74.9+2.6|75.41+5.7|74.2+2.6

3.2 Performance Comparison with Baseline Methods

We evaluate the proposed CP-SSM against baseline methods on ASD classifica-
tion using the ABIDE dataset and MCI classification using the ADNI dataset.
Each experiment is repeated ten times per dataset, and the disease classification
results are reported. Notably, the brain network community division in Com-
TF follows the Yeo 7-network template [24], which is based on brain network
analysis in young individuals. This makes it well-suited for the ABIDE dataset
(ages 764, median 14.7). However, since the ADNI dataset consists of older
participants (ages 50.5-82.8), this template is less appropriate. Therefore, we
do not report Com-TF results for ADNI. The results in Table [I] demonstrate
that CP-SSM consistently outperforms all baselines on both ABIDE and ADNI,
highlighting its superior capability in modeling functional connectivity for neu-
rological disease diagnosis compared to both traditional machine learning and
deep learning-based approaches.
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3.3 Ablation Study

Table 2. Ablation study of CP-SSM on ABIDE with the best and second-best values
in boldface and underline, respectively.

AUC ACC SEN SPE
CP-SSM 82.4+2.2 76.9+t1.4 79.3£8.8 74.5+8.4
w/o CP 79.94+3.3 75.9+ 2.3 81.9£7.3 69.2+8.9
w/o MoE 81.1£3.1 74.1+1.6 75.7£5.7 72.5+8.0
w/o CP-MoE 80.1£2.3 73.0£1.3 72.4+4.5 73.0£1.3
w/o SSM 81.14+2.2 74.7£0.8 77.3£5.0 72.3£5.3

learnable mask 79.4£2.3 74.0£1.7 73.5£6.2 74.5+4.9
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(a) Core node rate on ABIDE (b) Top k expert on ABIDE

Fig. 2. Sensitivity analysis of CP-SSM on ABIDE. The hyperparameters include core
node rate r and top-k expert selection.

We perform ablation studies to assess the effectiveness of each component
in the design of the proposed CP-SSM, with the corresponding experimental
results presented in Table 2. 1) w/o CP: the CP mask in CP-MoE is removed,
making the MoE structure equivalent to other SMoE methods [22I28]; 2) w/o
MokE: directly replace all MoE layers in the network with MLPs with the same
number of neurons; 3) w/o CP-MoE: CP-MoE is replaced by FFN in the common
Transformer architecture; 4) w/o SSM: replace SSM with the same transformer
block as implemented in [15]; 5) learnable mask: substitute the core-periphery
guided mask with a weighted learnable mask. Furthermore, replacing the SSM
module with a Transformer block led to an increase in the number of model
parameters from 11.6M to 12.2M, while classification accuracy decreased by
2%. This finding highlights the computational efficiency of the SSM module
in maintaining model performance while reducing parameter complexity. The



8 M. Chen et al.

sensitivity analysis of the proposed method on ABIDE, presented in Fig. [2]
explores the impact of the core node rate r and the top-k selection.

3.4 Neuroscientific Analysis
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(a) Top 5 discriminative brain regions on (b) Top 5 discriminative brain regions on
ABIDE in ASD diagnosis ADNI in MCI diagnosis

Fig. 3. Top 5 discriminative brain regions derived from the learnable weight in the
last CP-SSM layer on (a) ABIDE and (b) ADNI, with different colormap intensities
reflecting relative significance.

As shown in Fig[3] we visualize the learnable weights of the last layer of CP-
SSM block to show the top 5 rated brain regions for ASD diagnosis and MCI
diagnosis, respectively. In the figure, we present the brain region names from the
Automated Anatomical Labeling (AAL) atlas that exhibit the highest overlap
with each corresponding region.

— ASD analysis: the identified regions, including the Supplementary Motor
Area (SMA), Thalamus, Precuneus, Fusiform Gyrus, and Middle Frontal
Gyrus, are associated with social cognition and motor functions. Studies
indicate reduced connectivity in the Precuneus and Middle frontal Gyrus in
individuals with ASD, which affects social behavior and theory of mind [4].

— MCI Analysis: the key regions identified, including the Inferior Occipital
Gyrus, Middle Frontal Gyrus, Anterior Cingulate Gyrus, Central Sulcus,
and Occipito Temporal and Lingual Gyrus, show strong associations with
neurodegeneration and cognitive decline. The findings of the discrimination
region are consistent with existing studies [T920].

These findings corroborate existing research, highlighting the involvement of
these brain regions in ASD and MCI.

4 Conclusion

In this paper, we propose a core-periphery principle guided state-space model
for functional connectome classification. We utilize the Mamba block to model
long-range dependencies in brain connectivity and incorporate the core-periphery
principle to guide the MoE. To the best of our knowledge, this work represents
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the first adaptation of the Mamba and MoE architectures for functional brain
network analysis. Extensive experimental results demonstrate that our method
not only outperforms other deep learning approaches but also offers strong in-
terpretability, making it a robust and insightful framework for functional brain
network analysis. Future work will focus on validating the effectiveness of our
method across a broader range of datasets and assessing its performance on tasks
beyond classification.
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