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Abstract. Cone Beam Computed Tomography (CBCT) is widely used
in medical imaging. However, the limited number and intensity of X-ray
projections make reconstruction an ill-posed problem with severe arti-
facts. NeRF-based methods have achieved great success in this task. How-
ever, they suffer from a local-global training mismatch between their
two key components: the hash encoder and the neural network. Specifi-
cally, in each training step, only a subset of the hash encoder’s parameters
is used (local sparse), whereas all parameters in the neural network par-
ticipate (global dense). Consequently, hash features generated in each
step are highly misaligned, as they come from different subsets of the hash
encoder. These misalignments from different training steps are then fed
into the neural network, causing repeated inconsistent updates, which
leads to unstable training, slower convergence, and degraded reconstruc-
tion quality. Aiming to alleviate the impact of this local-global optimiza-
tion mismatch, we introduce a Normalized Hash Encoder, which en-
hances feature consistency and mitigates the mismatch. Additionally, we
propose a Mapping Consistency Initialization(MCI) strategy that
initializes the neural network before training by leveraging the global
mapping property from a well-trained model. The initialized neural net-
work exhibits improved early training stability, faster convergence and
enhanced reconstruction performance. Our method is simple yet effec-
tive, requiring only a few lines of code while substantially improving
training efficiency on 128 CT cases from 4 different datasets, covering 7
distinct anatomical regions. https://github.com/iddifficult/NI NeRF.
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Fig.1: This figure illustrates the update mismatch and feature misalignment
problem. The small flame icons indicate the updated sections.

1 Introduction

Cone Beam Computed Tomography (CBCT) is widely used in dental, ortho-
pedic, and interventional imaging due to its lower radiation dose, and faster
scanning speed [22]. However, the potentially harmful effects of X-ray radiation
limit the intensity and number of projections in CBCT scans, leading to sparse-
view data acquisition. This sparsity in projections makes CBCT reconstruction
an ill-posed problem, causing image degradation and severe artifacts.

To relieve this issue, numerous sparse-view CBCT reconstruction algorithms
have been proposed, broadly categorized into three types: traditional methods
such as FDK [7] and SART [I], supervised learning methods like iBP-Net and
DIF-Net [TTIT3128/T4], and self-supervised methods like NeRF-based [25/211527]
and 3DGS-based approaches [26/4J8/12]. Among them, NeRF has emerged as
a powerful self-supervised method, effectively reducing artifacts in traditional
methods, eliminating the need for paired data in supervised learning, and re-
quiring no distribution assumptions as in 3DGS-based methods that may in-
herently introduce false artifacts. However, the vanilla NeRF [I5] architecture
needs an extremely long training convergence time (hours to days) because it
relies entirely on a neural network (i.e., multilayer perceptron or MLP) to learn
the mapping of the entire 3D space, resulting in a massive neural network and
slow convergence speed.

To address this, recent NeRF-based methods have replaced frequency en-
coding with hash encoding as the positional encoding, significantly reducing
computational complexity and training difficulty, thereby leading to much faster
convergence [27J5]. While hash encoding effectively accelerates training, it intro-
duces a new challenge: a fundamental local-global optimization mismatch
between the hash encoder and the neural network. Existing methods primarily
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focus on designing efficient models or effective ray sampling strategies but have
overlooked this critical issue. Specifically, as shown in Fig. [[] since the param-
eters on the hash grid are independently learnable [16], only a subset of the
hash encoder’s parameters is used (local sparse) in each training step, whereas
all parameters in the neural network participate (global dense). Consequently,
hash features generated in each step are highly misaligned, as they come from
different subsets of the hash encoder. These misaligned features from different
training steps are then fed into the neural network, causing repeated inconsis-
tent global neural network updates in each training step, which leads to unstable
training, slower convergence, and degraded reconstruction quality.

In this paper, we claim that Normalization and Initialization can alleviate
the impact of the local-global optimization mismatch. Therefore, we introduce
a Normalized Hash Encoder, which enhances feature consistency and mit-
igates the mismatch. Specifically, we add a Layer Normalization (LN) between
the hash encoding model and the neural network. This ensures that the fea-
tures of the hash encoding maintain a unified global mean and variance across
the whole training process, thereby mitigating the misalignment problem. Addi-
tionally, we propose a Mapping Consistency Initialization(MCI) strategy
that initializes the neural network before training by leveraging the global map-
ping property from a well-trained model. Sepcifically, we first train a complete
NeRF-based CBCT reconstruction model on entire volume of one case and then
reuse its neural network component as the initialization for other reconstruction
tasks. By transferring learned knowledge across cases, the initialized neural net-
work exhibits improved stability during early training, significantly accelerates
convergence and enhances reconstruction performance.

To the best of our knowledge, we are the first to systematically investigate
the local-global optimization mismatch and propose a simple-yet-effective
and feasible method. We conduct extensive experiments on 128 CT cases col-
lected from 4 different datasets, covering 7 distinct anatomical regions. The
results show that our method not only outperforms NeRF-based methods in
terms of reconstruction speed and quality but also achieves comparable recon-
struction speeds to 3D Gaussian Splatting (3DGS) while surpassing 3DGS in
reconstruction quality.

2 Method

2.1 Pipeline

As shown in Fig. |2 we display the complete pre-training method and the training
process during reconstruction. During pre-training, since the use of ground truth
information is permitted, We perform dense random sampling on the entire vol-
ume and directly supervise the entire NeRF model using the values corresponding
to the sampled points on the GT. During reconstruction, we only load the Layer
Normalization (LN) and the neural network weights into the new NeRF model,
sample spatial points along the propagation path of the X-ray, and compute the
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Fig. 2: Our pipeline of pre-training and normal reconstruction.

loss by integrating and comparing the values with those corresponding to the
projection image.

2.2 X-ray rendering process

Due to the penetrative nature of X-rays and the known positions of the light
source and detector, we adopt the Beer-Lambert Law (BLL) to replace the a-
blender in the original NeRF. The BLL describes the exponential attenuation of
light intensity as X-rays pass through an object.Where A is the projection value,
Iy is the initial X-ray intensity, u; is the attenuation coefficient at point ¢, and

d; is the step size.
7 N
A=—In (Io) = Zm&- (1)

i=1

2.3 Normalized Hash Encoder

Layer Normalization (LN) scales all feature vectors within a batch to have a
unified mean and variance. The formula for this transformation is as follows. To
validate the impact of feature misalignment on the neural network, we record
a batch of hash-encoded features every 100 epochs, along with the network’s
corresponding outputs. After 100 additional epochs, we reprocess the recorded
features and compute the L1 error between the two inference results to assess
neural network stability. As shown in Fig. (3] without Layer Normalization (LN),
the neural network converges slowly and exhibits significant confusion; incor-
porating LN enables the network to converge quickly and stably. We place LN
between the neural network and the hash encoder.
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Fig.3: Variation of MLP during  Fig.4: Feature PCA results of ab-
training process, lower means sta- domen, chest and head.
bler.

Furthermore, at the channel level of the hash features, we find some channels
exhibit meaningless noise. Via Fast Fourier Transform (FFT), we distinguish
and mask these channels during training to improve model’s performance.

2.4 Mapping consistency initialization

To further investigate the function of neural network in NeRF, we employ Prin-
cipal Component Analysis (PCA) to analyze the features of the hash encoding.
Specifically, We use the first three principal components as the RGB channels
of the image, where similar colors indicate similar features. As shown in Fig. [
spatial points with similar attenuation coefficients(exhibit similar brightness in
CT) have similar feature vectors. This finding indicates that the neural network
inherently learns a consistent simple mapping in different cases, which inspired
us to employ pre-training to facilitate faster and more stable model training.
To avoid the significant time consumed by traditional NeRF training, we by-
pass the NeRF rendering pipeline and directly supervise the attenuation coeffi-
cients of individual spatial points using a voxel-to-voxel loss, enabling an efficient
dense-volume pre-training process. M means NeRF, x,y,z means coordinates.

Vozel _loss = ||pgt — M(x,y, 2)||1- (2)

2.5 Sparse-view training

During training, we sample spatial points along X-ray trajectories and compute
predicted projection values using the BLL. Then minimize the L1 loss between
predicted and GT projections.

N
Pizel loss = ||Ag — ZM(%,%, 2:)0i||1- (3)

=1
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Fig.5: Visualization of Reconstruction Results. The SSIM is displayed in the
upper right corner of each image.

3 Experiments

3.1 Settings

Data We evaluate our method on four public datasets, covering common medical
CT scenarios, including the head, chest, and abdomen. For the chest, we use the
Covid-19 dataset [2], which includes data from 10 patients. For the abdomen,
we utilize the Pancreas CT dataset [20], comprising 82 patients. For the head,
we extract 34 cases from the HAN seg [19] dataset. All these datasets have a
resolution of 512 x 512 x num _slice. Furthermore, we test four medical case in
R? Gaussian dataset, which is in resolution of 256 x 256 x num _ slice. To validate
our method, we use 50 views for each dataset and conduct our projections with
TIGRE toolbox [3] following NAF setting [27].

Baselines We compared our method with five baselines: FDK [7], a tradi-
tional analytical method; SART [I], a widely used iterative algorithm for sparse-
view CT reconstruction; NAF [27], a NeRF variant with hash encoding; SAX-
NeRF [5], a high-quality but time-consuming CT reconstruction method; and
R? Gaussian [26], a 3DGS-based approach.

Implementation details Our experiments are implemented in PyTorch [I8]
and CUDA [17], trained using the Adam optimizer [6] with a learning rate of 1 x
1073. The batch size of view is 1, and the number of sample rays per projection is
1024, with 320 sample points per ray. We only use one abdomen case to pre-train
neural network and load the same weights in all cases. For each method involved
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Table 1: PSNR/SSIM score of methods on 4 datasets. Best and second-best.

Method Chest [2] Abdomen [20] Head [19]
FDK [7] 19.56,.2867 21.78/.3865 24.62/.3067
SART [1] 23.75/.5855 28.05/.7645 30.42/.8821
R? Gaussian [26] 27.40/.7547 34.30/.9192 35.38/.9637
NAF [27] 26.12/.7149 33.53/.8961 34.09/.9533
NAF+LN 26.61/.7290 35.04/.9149 34.51/.9555
NAF+MCI 26.60/.7288 34.45/.9056 34.38/.9552
NAF+LN+MCI 27.51/.7618 35.54/.9234 34.53/.9579
Method GS__chest GS_ foot GS_head GS_jaw
FDK [1] 26.28/.4967  26.22/.4479  29.35/.5753  29.73/.6524
SART [1] 31.87/.8652  30.29/.8669  35.18/.9252  33.13/.8388

R? Gaussian [26] | 36.27/.9482 31.98/.8813  41.26/.9842  36.40/.8885
SAX NeRF 5| | 35.88/.9347 31.97/.8828  41.11/.9814  35.37/.8707

NAF [27] 34.77/.9050 31.3/.8726 40.65/.9736  34.15/.8366
NAF+LN 36.25/.9373  31.60/.8849  42.43/.9857  35.21/.8722
NAF+MCI 36.22/.9382  31.64/.8872  42.74/.9873  35.30/.8741

NAF+LN+MCI 37.18/.9484  31.64/.8861  42.85/.9885  35.36/.8745

in the testing, we train it for a sufficiently long period (3000 epochs for the NeRF-
based method and 30000 epochs for R? _Gaussian) to ensure convergence.

3.2 Reconstruction performance

Our evaluation includes two parts: (1) traditional image quality metrics (PSNR
and SSIM [23]), and (2) Average Segment Dice Score. For the latter, we use
TotalSegmentator [24/10], a widely adopted segmentation model, to assess the
similarity between ground truth and reconstructed images [9]. Additionally, we
test our method’s performance under different numbers of views on three cased7]

Image quality performance Through our method, NAF achieves better image
quality and the fastest reconstruction speed among NeRF-based approaches, as
in Table [I} Compared to Gaussian Splatting (GS)-based methods, our method
shows superior quality on most datasets and has a similar converge time (18
min). To further validate the clinical relevance of these methods, we visualize the
images using different window settings, closely mimicking real clinical scenarios.
The results show that GS-based methods exhibit severe artifacts and blurred
organ boundaries as in Fig. [5| What’s more, to demonstrate the versatility of
our method, we also test its performance on SAX-NeRF, which imporves SSIM
from 0.921 to 0.932.

Segment quality performance Our method makes NAF outperform much
better than R2-Gaussian on segment Dice, as in Fig. @ These results demon-
strate that our method helps NAF’s reconstruction results have better anatom-
ical structure fidelity.
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3.3 Ablation study

To evaluate the impact of our proposed improvements, we select three images and
compute the average SSIM across them. As shown in Fig. [§] each modification
not only accelerates convergence but also enhances the final performance.
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4 Conclusion

In conclusion, we address the local-global training mismatch in NeRF-based
CBCT reconstruction, where the hash encoder’s local sparse updates conflict
with the neural network’s global dense updates, causing misaligned features,
unstable training, and slow convergence. To resolve this, we propose a Nor-
malized Hash Encoder for feature consistency and a Mapping Consistency Ini-
tialization(MCI) strategy for stable neural network initialization. Our method,
requiring minimal code changes, but significantly improves training efficiency
and reconstruction quality. This work provides a robust solution for efficient and
accurate CBCT reconstruction.
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