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Abstract. The Segment Anything Model (SAM) has achieved outstand-
ing performance in both natural and medical image segmentation with
extensive research validation. When applied to ultrasound images, which
involve low contrast, indistinct boundaries and complex shapes, large
models still suffer from significant performance degradation and limited
generalization ability. We explore these challenges from a new perspective
with the help of the segmentation foundation model SAM. In this pa-
per, we propose Nora, a noise-robust fine-tuning framework for SAM to
address domain generalized ultrasound image segmentation. Specifically,
we introduce a feature-adaptive perturbation module, which applies well-
designed noise to the fine-tuned features. We stimulate the model to seg-
ment the correct regions even under severe interference, thereby improv-
ing its robustness. Moreover, to further optimize SAM with prompts, we
present an instance-aware prompt generation module. We introduce a set
of tokens linked to distinct instances and then design a token-based aug-
mentation strategy to prevent overcoupling and encourage tokens to cap-
ture more diverse information. Our Nora achieves state-of-the-art perfor-
mance across extensive cross-domain experiments with three ultrasound
image segmentation tasks, fully demonstrating its effectiveness and gen-
eralizability. The code is available at https://github.com/wkklavis/Nora.
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1 Introduction

Ultrasound imaging, recognized for its non-invasive, safe, and widely accessi-
ble nature, plays a critical role in medical diagnosis and therapeutic interven-
tions [26]. Numerous deep learning models have been proposed for ultrasound
image segmentation, demonstrating significant potential. However, their perfor-
mance often degrades when applied to other centers or hospitals, resulting in
inconvenience for clinical use. Domain Generalized Ultrasound Image Segmenta-
tion (DGUIS) aims to train the model on a single source domain, enabling robust
segmentation predictions on unseen target domains for ultrasound images.


https://github.com/wkklavis/Nora

2 7. Wel et al.

Ultrasound images are intrinsically limited in quality, often exhibiting low
resolution, poor contrast, and a low signal-to-noise ratio (SNR), which hinder
the visibility of critical information [19]. Traditional generalization methods, pri-
marily focused on style transformation, perform less effectively than expected on
ultrasound images. The emerging vision foundation model [21,10], with strong
generalization ability inherited from a large quantity pre-trained images, pro-
vides a new possible paradigm for domain generalized segmentation. Recently,
many methods have adapted the Segment Anything Model (SAM) [21] to med-
ical downstream tasks, achieving significant performances. However, SAM still
struggles with low-quality ultrasound images, and there is a lack of generalized
segmentation schemes specifically designed for them.

Inspired by adversarial attack [9], we start with noise robustness to approach
the task of domain generalized ultrasound image segmentation. We draw an anal-
ogy between ultrasound generalization and adversarial defense. To be specific,
we treat noisy ultrasound images as if they were already subjected to adversarial
attacks. We tackle the problem by adopting noise injection [15] from adversarial
defense strategies to enhance the model’s robustness. In this paper, we present
a novel Noise Robust fine-tuning SAM framework (namely “Nora”) to address
domain generalized ultrasound image segmentation. Its conceptual idea is to
leverage the excellent segmentation capability of the large model to identify ro-
bust features under severe noise interference, thereby achieving generalization.

First, we propose a feature-adaptive perturbation module. When fine-tuning
the SAM’s encoder, we strategically inject well-designed noise into the interme-
diate features. We expect the model to not only segment low-quality ultrasound
images successfully but also extract the correct regions of interest from features
with higher levels of noisy corruption. With the strong segmentation potential of
the foundation model, we fine-tune the disrupted features, facilitating the model
to optimize and identify robust information. Thus, when faced with unseen ul-
trasound domains, our model still exhibits strong generalization performance.

Moreover, we design a module to generate instance-aware prompts automati-
cally, aiming to fully exploit the benefits of prompts for SAM. We introduce a set
of learnable tokens that interact with image embeddings. These tokens, combined
with cross-attention features, serve as sparse and dense prompts for subsequent
network respectively. We aim for the tokens to interact with distinct instances,
facilitating instance-level feature refinement [31]. Additionally, to better adapt to
ultrasound image tasks, we design a token-based perturbation algorithm to pre-
vent the learnable parameters from overcoupling to specific instances. Building
on token-based feature refinement, we model inter-token dependencies and apply
noise perturbation accordingly to mitigate overfitting, thereby further enhancing
the model’s generalization in ultrasound image segmentation.

In a nutshell, the main contributions of this paper are as follows:

1. We propose a novel domain generalization framework by fine-tuning the
vision foundation model for ultrasound image segmentation. We apply a
noise-based feature perturbation mechanism to stimulate SAM to learn more
robust features.
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2. We present a noise-robust prompt module, to efficiently and automatically
harness SAM. We introduce a set of tokens to link distinct instances and gen-
erate fine-grained prompts, while incorporating a novel token perturbation
algorithm to mitigate overfitting.

3. Extensive experiments across various DGUIS settings demonstrate the gen-
eralization of our fine-tuning scheme. Our Nora surpasses recent SAM-based
and fine-tuning methods, achieving state-of-the-art results on cross-domain
ultrasonic datasets covering three distinct organs.

2 Related works

Domain Generalized Medical Image Segmentation. Numerous approaches
[23,4,16,8,25] have been proposed to address the model performance degradation
due to distribution shift across varied application scenarios. The emergence of
foundation vision models has led to numerous works to adapt them to medical
tasks [28,24,14,5], achieving remarkable performance. Meanwhile, SAM, with its
outstanding general segmentation capability, has introduced new perspectives
for domain generalized segmentation. DAPSAM [30] proposes a domain-adaptive
prompt framework to store and utilize source domain knowledge. Rein [31] in-
troduces a robust fine-tuning approach to parameter-efficiently harness vision
foundation model. In this paper, we consider the characteristics of ultrasound
images and primarily focus on domain generalization, which is significant but
lacks extensive research and exploration.

Noise Robust in Adversarial Attacks. Deep neural networks have achieved
great success in a variety of applications. Despite the remarkable improvement,
prior studies [7,3] have shown that networks are vulnerable to adversarial ex-
amples, which are intentionally perturbed inputs designed to cause erroneous
prediction [13]. Such a fragility undermines the model’s reliability and limits
its deployment in critical fields like healthcare and autonomous driving. To ad-
dress these vulnerabilities, researchers have proposed various defense methods.
Among these, randomization techniques, particularly noise injection [15,18,32],
have shown strong potential in enhancing adversarial robustness by introducing
controlled uncertainty, helping the model counter adversarial inputs more effec-
tively. In this paper, we treat ultrasonic images as attacked inputs and adopt
adversarial defense strategies to tackle the problem. We address domain gener-
alized ultrasound image segmentation from a novel perspective.

3 Method

For DGUIS, the objective is to learn a segmentation model for ultrasound images
using only a source domain S, and the trained model is expected to show good
generalizable performance on any other unseen target domains 7 = {71, ..., T }.
We explore DGUIS based on fine-tuning SAM.
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Fig. 1. The pipeline of the proposed Nora, a fine-tuning framework for DGUIS. We
propose a feature-adaptive perturbation module (left) within the feature space of the
adapter in each frozen block to encourage SAM to learn more robust features. To effi-
ciently and automatically leverage SAM, we present a noise-robust prompt generation
module (right), consisting of an instance-aware prompt and token-noise perturbation.
The image embedding and the prompts are then fed into the decoder.

3.1 Feature-Adaptive Perturbation

For simple implementation, we do not redesign the fine-tuning structure as de-
scribed in the [24,31]. Instead, we apply AdaptFormer [6] to fine-tune SAM
thanks to its efficiency and scalability, and further extend our work based on it.

We propose a feature-adaptive perturbation module within the feature space
of the adapter. Different from previous style transformation methods based on
AdalIN [17], we directly apply well-designed noise perturbations at the original
features f; produced by the i-th layer. Due to the uncontrollable perturbation
impact of the vanilla Gaussian noise, we first align the distribution between the
Gaussian noise 7 and feature f; using the mean p; and the variance o; computed
from f; along the spatial dimension. Moreover, to better design the noise, we
apply a sigmoid function to the features to generate the weight, which controls
the magnitude of the perturbation. The entire feature-noise perturbation fine-
tuning module can be formulated as:

fi = Adapter (f; + o - (n- 0 + 1)), o = sigmoid(fi), n~N(0,1), (1)

where Adapter(-) denotes the lightweight tuning module from AdaptFormer [6],
«; is our noise perturbation weight, computed using the sigmoid function. We
generate the weight based on the relative magnitude of the current features—high
values allow stronger perturbations, while low-value features are less disturbed.
This adaptive weight enables us to apply noise perturbations within a controlled
range, which helps preserve feature integrity while encouraging the model to
identify more robust features.
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3.2 Noise-Robust Prompt

Building upon [31,2] but differing in design and structure, we introduce a set
of learnable tokens T € RV*C for prompting and a novel token-augmentation
algorithm. These tokens interact with instances, refine the image embedding,
and generate sufficient prompts to guide the subsequent decoder for segmen-
tation. Specifically, for each image embedding E € R¥*WXC our tokens act
as queries through cross-attention to compute refined features, which serve as
dense prompts Pgense € RIXWXC At the same time, the tokens also function
as sparse prompts Pgparse € RN*C providing supplementary information:

. E-TT, - .

Pjense = Linear (Softma:z:( ) T+ E>, Pyporse =T =TNP(T), (2)
VGO

where Linear(-) is a simple linear layer used to project the feature space. TN P
represents our proposed token noise perturbation module.

For each instance, we aim for tokens to learn more fine-grained features.
FADA |[2] employs instance normalization to mitigate tokens’ preference for
domain-specific styles. When handling low-quality ultrasound images, we adopt
a more effective token-instance decoupling strategy to prevent overfitting. When
a token exhibits excessively high similarity with other tokens, we consider its
knowledge replaceable. Inspired by [27], but instead of pruning it, we design a
token-enhancement algorithm tailored for ultrasonic features. We consider the
correlations within tokens and introduce noise perturbation in a targeted manner
to stimulate tokens T to capture richer instance-level information. Specifically,
we calculate the similarity between each token and the other tokens to determine
the degree of perturbation fr € RV:

N T T,
Lol DT = Dis L yro.1), (3)

TNP(T) =T+ fr-n, pr =22

where n € RV*® is random noise from a standard Gaussian distribution and I
denotes the identity matrix.

The perturbation of tokens not only mitigates the overfitting of learnable
tokens to source domain features, but also encourages tokens to learn instance-
level robust features throughout the training process.

4 Experiments

4.1 Experimental Settings

Implementation Details. We employ AdaptFormer [6] to fine-tune the SAM
as our baseline model. We adopt the same experimental setting as DAPSAM [30],
including the warm-up strategy, the rank of adapter and the loss design. The ini-
tial learning rate is set to 5e~%, and the weight decay for the AdamW optimizer
is set to 0.1. The hyperparameter N, representing the number of tokens, is set
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Table 1. Quantitative comparison of our Nora and some state-of-the-art domain
generalization methods on BUS datasets. The best and second-best are bolded and
underlined, respectively.

BUSI — DatasetB BUSI — STU

Method Type

Dicet mloUT ASD] HDJ| Dicet mloUtT ASD| HDJ]
Baseline [6] - 80.37  72.39 4.82 21.35 88.15 79.80 1.00 16.99
DSU [23] Style 81.33 73.35 4.23 19.33 88.63 80.45 0.63  18.18
TriD [§] Transfer 81.65 73.90 4.30 18.39 89.21 81.41 0.91 17.35
Rein [31] Fine 80.51  71.89 6.11 23.83 88.13 79.78 0.72  16.85
FADA [2] Tuning 81.36 73.55 4.67 21.48 88.67 80.39 0.59  16.27
DAPSAM [30] SAM 81.67  73.42 551 22.82 89.37 81.85 0.41 15.16
SAMUS [24] Based 82.23 72.61 6.00 21.77 88.61 80.14 4.08  27.33
Nora (Ours) 83.88 75.81 3.60 16.77 90.41 83.16 0.22 15.39

to 50 for a suitable trade-off [31]. To quantitatively evaluate the segmentation
performance, we adopt the following four commonly used metrics: dice coef-
ficient (Dice), mean intersection over union (mloU), average surface distance
(ASD), and hausdorff distance (HD).

Datasets. We conduct three different domain generalized ultrasound image seg-
mentation experiments, including breast cancer (BUS), thyroid nodule (Thy-
roid), and myocardium (MYO) ultrasound datasets. For BUS, we use BUSI [1],
DatasetB [33] and STU [34]. BUSI is randomly split into 7:1:2 for training,
validation, and testing, respectively. For Thyroid, we leverage TN3K [11] and
DDTI [29]. The data in TN3K is partitioned into train, and test sets following
TRFE [12]. For MYO, we adopt CAMUS [22] and HMC-QU [20]. We extract
only the first frame from each video of CAMUS to ensure a dataset size similar
to that of HMC-QU.

4.2 Comparison with SOTA Methods

Results on DGUIS are presented in Table 1 and Table 2. We compare our
Nora with some recent state-of-the-art generalization approaches on DGUIS
task. For BUS, our Nora surpasses the best-performing SAM-based methods,
DAPSAM [30] and SAMUS [24] with an increase of 2.21% and 1.65% in Dice on
the Spusr—sDatasetB, and also outperforms the latest generalization fine-tuning
frameworks, Rein [31] and FADA [2]. Additionally, our method also surpasses
TriD [8], an efficient and superior approach based on style augmentation, by
approximately 2%. For Thyroid and MYO, Nora also achieves state-of-the-art
results. Notably, our method maintains strong performance and exhibits stable
segmentation capability across different ultrasound tasks for various diseases.
In contrast, SAMUS, which fine-tunes a larger number of parameters (~38M
vs. ours ~7M), suffers a substantial performance drop in the MYO task, where
cross-domain style variations are more pronounced.
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Table 2. Quantitative comparison of our Nora and some state-of-the-art domain
generalization methods on Thyroid (left half) and MYO (right half) datasets. The
best and second-best are bolded and underlined, respectively.

Method TN3K — DDTI CAMUS3K — HMC-QU
Dice? mloUT  ASDJ HDJ Dicet mloUtT  ASDJ HD/J
Baseline [6] 74.97 64.37 4.32 43.90 75.70 61.11 1.01 15.85
DSU [23] 76.05 65.26 4.33 45.26 76.58 62.30 1.08 16.26
TriD [§] 77.18 65.68 4.34 45.35 77.21 63.09 0.92 15.86
Rein [31] 75.87 64.69 5.00 45.90 77.37 63.27 0.75 15.28
FADA [2] 76.31 65.33 4.32 43.61 76.74 62.48 0.81 15.31
DAPSAM [30] 77.26 66.29 3.71 43.12 76.98 62.79 0.81 13.71
SAMUS [24] 76.32 64.53 19.33 62.98 47.41 31.41 9.61 44.07
Nora (Ours) 77.73 66.54 4.07 43.71 77.74 63.77 0.78 14.42

Qualitative Analysis. Fig. 2 showcases the segmentation results from various
methods. Ultrasound image segmentation is particularly challenging due to low
contrast, inconsistent textures, and indistinct object boundaries. Nevertheless,
our method demonstrates robust performance when confronting these challenges,
achieving superior performance.

Results on noise injection are presented in Fig. 3. To better demonstrate the
effectiveness of our method, we also compare our feature-adaptive perturbation
module with recent or classic noise injection methods derived from adversarial
defense. Our method not only considers distribution alignment but also meticu-
lously adjusts the noise to perturb intermediate features, fully leveraging SAM’s
potential segmentation capability. It surpasses the parameterized PNI [15], the
learnable L2P [18], and also the latest NINE [32], which relaxes the Gaussian
distribution to a non-informative prior arbitrary distribution.

4.3 Ablation Study

Table 3 is dedicated to examining the effectiveness of each component in Nora
on the BUS datasets. Within the feature-adaptive perturbation (FAP), we in-
ject elaborated noise into the ultrasound feature space to promote model’s
disturbance-resistant ability, improving generalizable performance in unseen do-
mains and achieving a 1.24% gain in Dice on the Sy s7_s Dataset 3 Over the base-
line. Furthermore, we plumb the beneficial effect of prompts on SAM’s perfor-
mance, designing token-based prompts to capture fine-grained information and
facilitate instance-level feature refinement. To curb overfitting between tokens
and instances, token-noise perturbation (TNP) considers inter-token correlations
to generate noise perturbations, stimulating richer feature learning and further
improving the prompt module by 0.81% and 0.89% in Dice on target domains,
respectively. Our Nora starts with noise to explore SAM’s latent segmentation
capacity systematically, enhancing the model’s robustness and generalization.
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Fig. 2. Qualitative comparison between our Nora and some state-of-the-art domain
generalization methods on various ultrasound images.
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Fig. 3. Comparison results of our FAP
module and related noise injection meth-
ods on BUS datasets. All noise injection

the baseline AdaptFormer [6].

Components DatasetB STU
FAP Prompt TNP |Dicet HDJ |Dicet HDJ
X X X [80.37 21.35|88.15 16.99
v X x | 81.61 21.42|89.52 14.09
X v x [81.35 21.08 |88.50 16.77
X v v [82.16 19.35|89.39 17.81
v v v’ |83.88 16.77(90.41 15.39

methods are based on baseline.

5 Conclusion

In this paper, we propose a fine-tuning framework, Nora, which leverages the
powerful segmentation model SAM to address domain generalization ultrasound
image segmentation. Ultrasound plays an increasingly important role in medical
diagnosis. Conventional generalization approaches mainly focus on style varia-
tion and regularization. However, their performance often falls short when ap-
plied to low-quality ultrasound images in different domains. Driven by this, we
propose an efficient fine-tuning method specifically designed for DGUIS. Nora
primarily focuses on noise-driven optimization schemes, strategically applying
perturbations to the fine-tuned features and instance-aware prompts. We en-
hance the model’s disturbance-resistant capability and then improve its cross-
domain generalization, achieving superior performance compared to SOTA meth-
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ods. Extensive experiments across various settings validate the effectiveness of
proposed Nora in efficiently fine-tuning SAM for DGUIS.
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