MICCA1  "epubinedvesion

MG-UNet: A Memory-Guided UNet for Lesion
Segmentation in Chest Images

Shuaipeng Ding, Mingyong Li®™) and Chao Wang

School of Computer and Information Science, Chongqing Normal University,
Chongging 401331, China
limingyong@cqnu.edu.cn

Abstract. Lesion segmentation in medical images is a key task for
the intelligent diagnosis of lung diseases. Although existing multimodal
methods have achieved significant progress in medical image segmenta-
tion by combining image and text information, these methods still rely
on textual input during the inference phase, limiting their applicability in
real-world scenarios. To address this limitation, this paper proposes an
innovative Memory-Guided UNet model (MG-UNet). MG-UNet intro-
duces a learnable memory bank that automatically extracts and stores
textual information during the training phase. In the decoding stage,
the proposed memory-guided decoder retrieves knowledge relevant to the
current image from the memory bank, thereby eliminating the need for
textual input during inference. Extensive experiments were conducted
on the QaTa-Covl9 and MosMedData+ datasets to validate the effec-
tiveness of MG-UNet. The experimental results demonstrate that MG-
UNet not only outperforms existing unimodal and multimodal methods
in terms of segmentation performance but also excels in text-free in-
ference scenarios using only 15% of the training data, surpassing the
current best unimodal methods. This characteristic significantly reduces
the reliance on annotated data for medical image segmentation, offering
greater flexibility and scalability for practical clinical applications. The
code will be available soon.

Keywords: Chest CT - Multi-modal - Memory Bank - Medical image
segmentation

1 Introduction

Chest imaging modalities, such as X-rays and CT scans, play a crucial role in
the diagnosis and monitoring of various pulmonary diseases, including infectious
diseases and neoplastic disorders. With the rapid development of deep learning,
deep neural networks have been widely applied to radiological image analysis,
supporting auxiliary diagnostic tasks such as disease classification, lesion detec-
tion, and segmentation. Among these tasks, lesion segmentation is particularly
critical, as it not only enables precise localization and delineation of pathological
regions within the thorax but also provides quantitative foundations for disease
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staging and treatment planning, making it a key component of clinical diagno-
sis. Existing medical image segmentation methods [1-3], primarily based on the
UNet architecture [4], have achieved significant progress. However, due to their
reliance on large amounts of high-quality annotated data and the high cost and
inefficiency associated with expert involvement in the annotation process, their
widespread application in real clinical settings remains severely limited.

To mitigate similar issues available in natural image processing, CLIP [5]
capitalizes on the complementary information provided by accompanying text,
thereby reducing the dependency on high-quality annotated image data and
maximizing the utilization of available information. Inspired by CLIP, approaches
like MedCLIP [6] and GLoRIA [7] have extended these ideas to medical image-
report pairs situations, still showcasing excellent performance. Motivated by the
impressive performance gains achieved through the integration of textual infor-
mation, Li et al. [8] proposed a novel CNN-Transformer structure named LViT
to integrate multimodal information in the early stage. GuideDecoder [9] im-
plemented a novel approach that focuses on improving the decoder using both
image and text features. MMI-UNet [10] achieved state-of-the-art (SOTA) per-
formance on the QaTa-COV19 [11] dataset by integrating visual and linguistic
features during the encoder stage.

Although the above research has significantly improved segmentation per-
formance by leveraging text, these multimodal methods require textual input
during both training and inference, limiting their practicality in real clinical sce-
narios. To address this issue, we introduce a learnable Memory Bank to store
textual information, serving as a bridge between textual and visual information.
This allows us to enhance visual representation during inference by retrieving
relevant historical information from the Memory Bank, eliminating the need for
text input. Our contributions are as follows:

— We propose Memory-Guided UNet (MG-UNet), an innovative multimodal
learning method for lesion segmentation in chest images, achieving excel-
lent segmentation results during the inference phase without relying on text
input.

— We introduce an intermittent memory bank updating (IMBU) strategy that
allows the model to progressively transition from reliance on text input to
operating without text input during the training phase, thereby achieving
greater adaptability.

— Dual inference mechanism: The model dynamically updates the Memory
Bank through corresponding text, utilizing the updated Memory Bank to
extract knowledge relevant to the current image. In the absence of text in-
put, the model can directly retrieve knowledge from the historical Memory
Bank. This mechanism not only enhances the model’s adaptability but also
significantly improves the efficiency of knowledge utilization, thereby increas-
ing its operational viability in clinical diagnosis.
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2 Method

The overall architecture of our proposed Memory-Guided UNet model (MG-
UNet) is illustrated in Fig. 1. The model consists of three main components:
the image encoder, the Memory Bank Updating (MBU) mechanism, and the
Memory-Guided Decoder (MG-Decoder). The image encoder encodes the input
images into feature representations, while the MBU mechanism automatically
learns and stores textual knowledge into the Memory Bank during training.
Subsequently, the image features are processed by the MG-Decoder, which ex-
tracts knowledge relevant to the current image from the Memory Bank and fuses
it with the encoder features. The iterative process of the MG-Decoder effectively
utilizes different levels of image features and knowledge from the Memory Bank,
resulting in a more efficient fused representation. Finally, a segmentation head
is used to generate the final segmentation predictions.
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We will elaborate on these components in the following sections and introduce
an intermittent memory bank updating strategy to enable the model to better
adapt to the text-free inference process.
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2.1 Image Encoder

We utilize ConvNeXt tiny [12] as the image encoder to extract multiple visual
features from the input image. Given an input image of size H x W x 3, the
encoder extracts feature maps with dimensions % X % x 96, % X % x 192,

1% X ‘{V—ﬁ x 384, and 3% X % X 768, respectively. These feature maps are then
adjusted to a uniform number of channels through 3 x 3 convolution operations,
set to 64 in this paper to balance model performance and efficiency. The result-

ing features are denoted as F4, E3, F>, and Ej.

2.2 Memory Bank Updating

We first adopt the pre-trained CXR-BERT [13] as the text encoder to extract
textual features, which are then reduced in dimensionality through a linear map-
ping, denoted as T. The dimensionality of these textual features is L x C, where
C represents the dimensionality of the extracted features and L signifies the
length (number of tokens) of the text description. We set C' to 64 and freeze the
text encoder during training.

Then we initialize the Memory Bank My € R¥»*P through a matrix, where
N,, is the base size and D is the dimension. To fully extract knowledge in the
Memory Bank, during initialization, we set IV,, = L and D = 64, the diagonal
elements of My are set to 1, while the other elements are set to 0. We update
the Memory Bank using a multi-head attention (M H A) mechanism [14]:

T
Att;(X,Y) = softmax (QX\/dEY> -Vy (1)

MHA(X,Y) = [Att)(X,Y);...; Att, (X, V)] (2)

where[;] stands for concatenation operation.

To update the Memory Bank M;_; at the training step t-1, we use the
textual features extracted from the corresponding text description to identify
the knowledge missing in M;_;.

AM, = MHA(M;_,, T) (3)

where AM; represents the incremental knowledge gained in the training step t,
while T represents the textual features gained in this equation. By integrating
incremental knowledge, we can update the Memory Bank during the training
step.

M; = M;_; + Norm (AM,) (4)

where Norm refers to layer normalization to normalize the incremental knowl-

edge.
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2.3 Memory-Guided Decoder

For the decoder feature D;, we first capture internal relationships and depen-
dencies through multi-head self-attention and a feed-forward network (FFN).
Then, we extract image-related knowledge from the Memory Bank using multi-
head cross-attention. Finally, the fused features are refined through a 3 x 3
convolutional layer. The process can be described as follows:

Di* = Norm (MHA (D;, D;) + D;) (5)
F?* = Norm (FFN (D;*) + D;%) (6)
EFf* = Norm (MHA (F7*,My)) (7)
F; = Convsys [Fica§ Fz'sa] (8)

Then, the processed features F; are upsampled using a transposed convolu-
tion and concatenated with the feature F;;; from the encoder, and finally pro-
cessed using a 3x3 convolution to obtain the decoder features D, 1, as shown
in Fig. 1 (c).

After three iterations, the decoder feature is first upsampled to match the
resolution of the original input image. Then, a 1 X 1 convolution and a sigmoid
activation function are applied to generate the segmentation output.

2.4 Intermittent Memory Bank Updating

During the training phase, since text corresponding to the images is used to
update the memory bank, directly utilizing a fixed-parameter memory bank for
text-free inference may result in feature degradation, leading to inaccurate seg-
mentation. To mitigate this potential issue, we propose a straightforward training
strategy (intermittent memory bank updating). Specifically, we train MG-UNet
over several rounds, each consisting of two epochs. In the first epoch, the mem-
ory bank is updated using the text associated with the images. In the second
epoch, we simulate the inference phase by omitting the text update process and
instead directly retrieving relevant historical information from the memory bank
for the current image.

3 Experiments and Results

3.1 Datasets and implementation

Datesets: To evaluate the performance of our proposed MG-UNet model, we
conducted experiments on two publicly available datasets: QaTa-COV19 [11]
and MosMedData+ [15]. The first dataset, compiled through a collaborative
effort between researchers at Qatar University and Tampere University, con-
sists of 9258 chest X-ray images depicting COVID-19 cases. The second dataset,
MosMedData+, includes 2729 CT scan slices specifically depicting lung infec-
tions. Notably, both datasets feature similar textual annotations that focus on
key clinical aspects such as the presence of infection in both lungs, the number
of lesions, and their approximate locations. These annotations are illustrated in
Fig. 1(a) for reference.
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Implementation: Following [8], we split the QaTa-COV19 dataset into train-
ing, validation, and testing sets, containing 5716, 1429, and 2113 samples, respec-
tively. The MosMedData+ dataset is divided into a training set of 2183 images,
a validation set of 273 images, and a testing set of 273 samples. All images are
cropped to a size of 224 x 224. For data augmentation, a random zoom technique
with a probability of 10% is applied. The implementation utilizes PyTorch [16],
PyTorch Lightning, and MONALI [17]. The entire training and testing process is
conducted on a Nvidia GeForce RTX 3090 with 24GB VRAM. During training,
we use a combined loss function consisting of Dice loss and cross-entropy loss,
with the network optimized using the AdamW optimizer and a batch size of 32.
A cosine annealing learning rate schedule is employed, starting from 3e-4 and
decaying to le-6.

3.2 Performance comparison with existing methods

We compared MG-UNet and the text-free reasoning model MG-UNet* with com-
monly used single-modal methods and the latest multi-modal medical image seg-
mentation methods. As shown in Table 1, MG-UNet outperformed all evaluation
methods on the QaTa-COV19 and MosMedData+ datasets. Notably, MG-UNet*
improved the DSC (Dice Similarity Coefficient) by 7.68% and 3.80%, respec-
tively, compared to the best single-modal method nnunet on the two datasets. It
also demonstrated better performance compared to some multi-modal methods.
Although there is still a gap compared to the latest multi-modal method MMI-
UNet, but MG-UNet* achieved a roughly 50% reduction in FLOPs compared
to MMI-UNet, and it does not rely on text input during the inference phase,
providing greater flexibility and efficiency for practical clinical applications.

The qualitative experimental results compared with ground truth are shown
in Fig. 2. We conducted qualitative comparisons between the proposed MG-UNet
method and other approaches on the QaTa-COV19 and MosMedData+ datasets,
respectively. In the visualization results, yellow indicates true positive regions
(correctly identified infected areas), red denotes false negative regions (missed
infections), and green represents false positive regions (normal tissues misclas-
sified as infections). The experimental results demonstrate that due to limited
feature extraction capabilities, traditional unimodal methods exhibit significant
performance limitations in complex scenarios, leading to substantial false neg-
ative segmentation results (noticeable increase in red regions). Compared with
other multimodal fusion methods, MG-UNet not only effectively suppresses over-
segmentation phenomena (indicated by blue annotations) through its innovative
feature fusion mechanism but, more importantly, maintains excellent true posi-
tive recognition capability. This advantage enables our model to accurately seg-
ment infected regions while effectively filtering out irrelevant areas.

3.3 Ablation study

To validate the effectiveness of the proposed module, we conducted an abla-
tion study on the QaTa-COV19 dataset. As shown in Table 2, compared to the
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Table 1. Quantitative comparison on segmentation results with uni-modal and pre-
vious multi-modal learning methods. loptimal and suboptimal performance is high-
lighted, 1(}) denotes the higher (lower) the better. MG-UNet results are averaged over
five runs.

QaTa-COV19 MosMedData+
DSCt TIoU?t DSCt ToU?t
UNet|[4] 14.8M 50.3G 79.02 69.46 64.60 50.73
UNet++ [3] 74.5M  94.6G 79.62 70.25 71.75 58.39
AttUNet [18] 349M 101.9G  79.31 70.04 66.34 52.82
TransUNet [2] 1056M 56.7G 78.63 69.13 71.24 58.44
UCTransNet [19] 65.6M  63.2G 79.15 69.60 65.90 52.69
Swin-UNet [1] 82.3M 67.3G 78.07 68.34 63.29 50.19
nnUNet [20] 19.1M 412.7G ~ 80.42 70.81 72.59 60.36

Method Params?T FLOPs]

CLIP [5] 87.0M 105.3G  79.81 70.66 71.97 59.64
LAVT [21] 118.6M  83.8G 79.28 69.89 73.29 60.41
LVIiT [§] 29.7M 54.1G 83.66 75.11 74.57 61.33
GuideDecoder [9] 44.0M  22.4G 89.78 81.45 77.75 63.60
TGCAM [22] - - 90.60 82.81 77.82 63.69
MMI-UNet [10] 56.2M  22.1G 90.88 83.28 78.42 64.50
MAdapter [23] - - 90.22 82.16 78.62 64.78

MG-UNet 30.5M 16.19G  90.90 83.30 78.65 64.80
MG-UNet” 30.56M 10.95G  88.10 77.80 76.39 61.79

baseline model that uses only images, MG-UNet achieved 6.72% improvement in
Dice Similarity Coefficient (DSC), confirming the effectiveness of the Memory-
Guided Decoder. MG-UNet* showed 3.72% decrease in DSC compared to MG-
UNet, likely due to the model’s reliance on a fixed-parameter memory bank,
which resulted in knowledge confusion and affected segmentation accuracy. By
incorporating our proposed training strategy, the model gradually transitioned
from text-based training to text-free inference, reducing the knowledge confusion
caused by the rigid memory bank, leading to 0.92% improvement in DSC scores.

Furthermore, we performed extensive experiments to assess the impact of
varying training data sizes on the model’s segmentation performance. As il-
lustrated in Table 3, even with limited training data, MG-UNet demonstrated
comparable performance to nnUNet. Specifically, when trained with only 15% of
the dataset, MG-UNet and MG-UNet* achieved 7.60% and 4.88% higher DSC
scores, respectively, compared to nnUNet, the best performing unimodal model
trained on the full dataset.
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Table 2. The ablation study of the QaTa-COV19 test set. "w/o text" indicates that
there is no text, and the model uses only the UNet decoder. "w/ text" means that text
is used during both the training and inference phases, referring to MG-UNet. "Test w/o
text" indicates that text is used only during the training phase, referring to MG-UNet".
TS represents the IMBU strategy we proposed during the training phase.

Model QaTa-COV19

DSCt IoU?

w/o text Baseline 84.18 72.62
w/ text MG-UNet 90.90 83.30
MG-UNet" 87.18 77.27

Test w/o text .
MG-UNet +TS 88.10 77.80
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Fig. 2. Qualitative results on the QaTa-COV19 dataset and the MosMedData+
dataset. Yellow, red, and green indicate true positive, false negative, and false posi-
tive, respectively.

Table 3. Impact of the training data size on segmentation performance. The best
results are shown in bold.

Method DSCt ToU?T
nnUNet (100% training data) 80.42 70.81
MG-UNet (15% training data) 88.02 78.60
MG-UNet (25% training data) 88.91 80.03
MG-UNet (50% training data) 89.94 81.87
MG-UNet (100% training data) 90.90  83.30
MG-UNet” (15% training data) 85.30  74.37
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4 Conclusion

This paper proposes the MG-UNet model for the segmentation of infected regions
in chest images. By designing a learnable memory bank, we establish a bridge
between visual and textual information, ensuring that the model can perform
inference and maintain segmentation performance even in the absence of textual
input. Extensive evaluations on the QaTa-COV19 and MosMedData+ datasets
demonstrate that MG-UNet outperforms the best-performing unimodal and mul-
timodal methods. Notably, even with limited training data during the text-free
inference phase, MG-UNet surpasses the best unimodal method, highlighting its
potential to significantly reduce the reliance on extensive data annotation while
offering greater flexibility and scalability for practical applications.
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