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Abstract. Deep learning models have emerged as a powerful tool for
various medical applications. However, their success depends on large,
high-quality datasets that are challenging to obtain due to privacy con-
cerns and costly annotation. Generative models, such as diffusion mod-
els, offer a potential solution by synthesizing medical images, but their
practical adoption is hindered by long inference times. In this paper,
we propose the use of an optimal transport flow matching approach to
accelerate image generation. By introducing a straighter mapping be-
tween the source and target distribution, our method significantly re-
duces inference time while preserving and further enhancing the quality
of the outputs. Furthermore, this approach is highly adaptable, sup-
porting various medical imaging modalities, conditioning mechanisms
(such as class labels and masks), and different spatial dimensions, in-
cluding 2D and 3D. Beyond image generation, it can also be applied
to related tasks such as image enhancement. Our results demonstrate
the efficiency and versatility of this framework, making it a promis-
ing advancement for medical imaging applications. Code is available on:
https://github.com/milad1378yz/MOTFM.
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1 Introduction

Over the past decade, artificial intelligence (AI), especially deep learning (DL),
has significantly advanced disease detection and segmentation from medical
images [28]. However, building reliable AI models for medical image analysis
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requires large, diverse datasets, which are hard to obtain due to privacy re-
strictions, rare diseases, and inconsistent diagnostic labels [21]. One solution is
to generate synthetic data to augment existing datasets [6]. Deep generative
models have shown promising results in various medical applications, enabling
more robust training for machine learning models [16]. Early generative mod-
els like Generative Adversarial Networks (GANs) [7] have been widely used for
medical image synthesis across modalities, including echocardiographic imag-
ing [27]. Conditional GANs incorporate additional inputs for greater control, as
in SPADE [15], which uses semantic layouts and has been applied to CT liver
volumes, retinal fundus images, and cardiac cine-MRI [22]. Despite generating
high-quality images, GANs often lack diversity and suffer from training instabil-
ity and mode collapse without careful tuning [14]. To address these limitations,
diffusion models, particularly Denoising Diffusion Probabilistic Models (DDPM)
[9], have emerged as a powerful alternative. By formulating the image synthesis
process as a continuous-time diffusion governed by stochastic differential equa-
tions (SDEs), DDPMs address some limitations of GANs, achieving superior
performance in both image quality and diversity [4]. Recent studies show that
these diffusion-based approaches even outperform GANs in generating medical
images in various applications . Diffusion models incorporate various condition-
ing mechanisms for enhanced control. Prompt-based conditioning, like Latent
Diffusion Models (LDM) [17], has been applied to Breast MRI and head CT
synthesis [24], while mask- or image-based conditioning, as in ControlNet [33],
has been used for colon polyp synthesis, showcasing their flexibility in medical
imaging. Building on these advancements, diffusion models have also been opti-
mized for efficiency. Deterministic variants like DDIM [23] reframe the stochastic
process as an ordinary differential equation (ODE), significantly reducing infer-
ence steps while maintaining performance. However, despite their advantages,
diffusion models still rely on iterative denoising through numerical ODE/SDE
solvers, resulting in slow inference times. While DDIM mitigates this by reducing
the number of steps, the underlying iterative solvers remain computationally de-
manding. In parallel, an alternative family of generative models, known as Flow
Matching, emerged. Unlike diffusion models (which maximize a variational lower
bound), flow matching directly approximates the transport between noise and
data distributions [12]. Additionally, flow matching methods are flexible, allowing
for diverse path definitions such as Gaussian, affine, and linear trajectories [12].
A key advancement in this family is flow matching with optimal transport [13],
which provides a direct mapping between the source (typically noise) and the
target distribution. Unlike diffusion models, which rely on iterative sampling,
flow matching with optimal transport enables significantly faster sampling by
constructing an efficient transport plan. Notably, optimal transport flow match-
ing has shown remarkable performance in natural image generation [12] and en-
hancement [34], yet its potential for medical imaging remains largely unexplored.
To the best of our knowledge, this is the first work leveraging flow matching with
optimal transport for medical image synthesis. Our key contributions are as
follows: 1) We present the first medical image synthesis framework leverag-



Title Suppressed Due to Excessive Length 3

ing Optimal Transport Flow Matching, significantly accelerating inference while
outperforming diffusion-based models in image quality. 2) We evaluate its effec-
tiveness across Unconditional, Class-Conditional, and Mask-Conditional Image
Generation, demonstrating its robustness, and versatility across diverse genera-
tive tasks. 3) Our method adapts to different medical imaging modalities (e.g.,
ultrasound, MRI) and spatial dimensions (2D, 3D), ensuring broad applicability.
4) The proposed approach supports end-to-end training, eliminating the need
for complex post-processing steps and simplifying the learning pipeline. This
study opens a new pathway for medical image generation, demonstrating that
flow matching with optimal transport is an effective and efficient alternative to
traditional generative models in the medical field, with fast inference enabling
real-time and interactive clinical applications such as simulation, training, and
point-of-care workflows.

2 Method

2.1 Preliminaries

Both flow matching with optimal transport and diffusion models [9] aim to
generate data from a complex target distribution X1 starting from a simple
Gaussian prior X0. Diffusion models achieve this by modeling the transforma-
tion as a continuous-time stochastic differential equation (SDE), where a neural
network estimates the drift term. These SDEs can be reformulated as prob-
ability flow ordinary differential equations (ODEs) [23], preserving marginal
distributions while enabling faster inference. In diffusion models, data gradu-
ally transitions from X1 to X0 by introducing Gaussian noise, ϵ, at each step,
xt =

√
ᾱt x1+

√
1− ᾱt ϵ. such that at the final time step T the data distribution

becomes pure noise, x0, and the model learns to estimate ϵ. The training ob-
jective minimizes the noise prediction error, Ldiff = Eϵ∼N (0, I)

[
∥ϵ− ϵθ(xt, t)∥22

]
.

Note that in practice the naming in diffusion models is often reversed (e.g., xT

is noise and x0 is the target); for consistency, we denote x0 as the noise (source)
and x1 as the target, as illustrated in Fig. 1. Since the diffusion process follows
a highly non-linear trajectory (Fig. 1.a), inference requires multiple iterative
steps. In contrast, flow matching with optimal transport addresses this ineffi-
ciency by defining a straight-line (or nearly straight) transformation between
X0 and X1 that approximates the optimal transport map under a quadratic
cost. Specifically, it models data as xt = t x1+(1− t)x0. and trains a neural net-
work to estimate the velocity field vθ(xt, t) such that ideally vθ(xt, t) = x1 − x0.
The corresponding loss function is LOTFM = Ex0,x1

[
∥(x1 − x0)− vθ(xt, t)∥22

]
.

From the perspective of optimal transport, this formulation seeks to minimize
the transport cost between the source and target distributions by matching the
learned velocity with the true optimal transport velocity. During inference, sam-
ples are generated by solving the differential equation, dxt

dt = vθ(xt, t). This
direct mapping allows the model to theoretically recover X1 from X0 in a sin-
gle step. In practice, however, the inferencing path is not strictly linear, and a
minimal number of steps is still required far fewer than in diffusion models [13].
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Fig. 1: a) The figure illustrates transitions from source x0 (blue) to target x1

(red). Diffusion models map noisy samples to targets (magenta), while flow
matching provides a more efficient path (cyan for training, dashed orange for
inference). The contour map represents probability density. b) MOTFM frame-
work with different conditioning strategies.

Mathematically, by leveraging the structure of optimal transport, flow match-
ing minimizes the discrepancy between the learned and optimal velocity fields,
effectively bridging the two distributions with near-optimal efficiency.

2.2 Medical Optimal Transport Flow Matching (MOTFM)

Our framework, Medical Optimal Transport Flow Matching (MOTFM), gener-
ates synthetic images using a UNet backbone [18] with attention layers [29] to es-
timate velocity in flow matching. To improve memory efficiency, we employ flash
attention [3] instead of standard attention. Flash attention is a GPU-optimized
technique that reduces memory usage by loading queries, keys, and values only
once and performing block-wise computations, thereby accelerating training and
inference. As shown in Fig. 1.b, training involves progressively adding Gaussian
noise to images with optimal transport. The UNet learns to estimate the ve-
locity field that maps noisy inputs to the original image. The loss between the
predicted and actual velocity fields is used to optimize network parameters. This
approach is generalizable to both unconditional and conditional image genera-
tion, as described below.
a) Unconditional Image Generation As shown in Fig. 1.b, when no condi-
tioning is provided, all switches are off, generating an image unconditionally. b)
Class-conditional Image Generation The generation process can be guided
by incorporating a one-hot class vector, indicating class number, into the UNet
via the cross-attention mechanism, enabling generating images with a specific
class. c) Mask-Conditional Image Generation Our method can optionally
be guided by masks to generate images, which is particularly important if the
downstream task is image segmentation. We introduce an additional UNet, fc
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(Fig. 1.b), to encode the mask. The decoder of fc employs zero convolutions, and
skip connections are established between the decoder of fc and vθ to incorporate
mask-based guidance. Notably, during training, both UNets are updated end-
to-end in contrast with [33]. Furthermore, this mask-conditioning approach can
be seamlessly combined with class-conditioning. This pipeline can be extended
to other image-to-image translation tasks.

3 Results

Experiment Settings. All generative models were trained with the Adam op-
timizer with learning rate 1e-4 for 200 epochs on an NVIDIA RTX 4090. For
classification and segmentation, the same optimizer was used for 50 epochs, se-
lecting the best model based on validation performance. For 3D generation tasks,
such as MRI synthesis, the overall approach remains consistent, with the primary
modifications being the use of 3D layers in place of their 2D counterparts.
Datasets. We utilized two datasets, one of which is the CAMUS echocardiog-
raphy (echo) dataset [11], which contains 2D apical views of both two-chamber
(2CH) and four-chamber (4CH) perspectives from 450 patients, covering both
end-diastole (ED) and end-systole (ES) phases. Initially, a subset of images from
50 patients was randomly selected for the test split, while the remaining 400
patients were designated for training. Following the baseline approach [25], we
further partitioned the dataset by assigning the first 50 patients to the validation
set, leaving the remaining 350 patients for training. This resulted in a total of
1400 images for training and 200 images for validation. As a second dataset, we
evaluate our pipeline on a different modality and dimension using the 3D MSD
MRI Brain Dataset [1]. The brain tumor dataset from the Medical Segmen-
tation Decathlon (MSD) challenge [1] comprises 750 multiparametric MRI scans
from patients diagnosed with glioblastoma or lower-grade glioma. Each scan in-
cludes T1-weighted (T1), post-Gadolinium contrast T1 (T1-Gd), T2-weighted
(T2), and T2-FLAIR sequences. These images, collected from 19 institutions,
were acquired using diverse clinical protocols and imaging equipment. For sim-
plicity, we focus only on T1-weighted images in this study.
Experiments. We evaluate our pipeline on two mentioned datasets, comparing
it to baselines, including our framework with DDPM (under various conditioning
settings), SPADE, and ControlNet as a mask-guided approach. For efficiency, we
used the DDIM scheduler [14] during DDPM sampling. The echocardiography
dataset is used for all conditioning methods, while the MRI dataset is used for
unconditional generation.
Qualitative Visualization. Fig. 2 presents image generation examples for
echocardiography (first two rows) and MRI (last row) using different condi-
tioning strategies for DDPM and MOTFM. In the echocardiography dataset,
the mask is used solely for conditioning in the mask-based generation approach.
Across both modalities, DDPM introduces a noticeable increase in brightness,
deviating from the real data distribution, whereas MOTFM maintains a pixel
distribution more consistent with real images. A similar brightness shift is also
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observed in the ControlNet-generated echocardiography images. To quantify this
effect, Fig. 3 shows the kernel density estimation (KDE) of pixel intensities for
real, DDPM-generated, and MOTFM-generated echocardiographic images. The
KDE plot highlights a higher density in the bright intensity range [150, 250] for
DDPM, indicating a shift toward brighter outputs. This brightness shift, also
observed in natural image generation [2], highlights the limitations of diffusion
models in maintaining realistic intensity distributions. Furthermore, MOTFM
outperforms DDPM, ControlNet, and SPADE in echocardiographic image qual-
ity. In MRI synthesis, 50-step MOTFM produces higher-quality images than
DDPM, and even its 10-step output outperforms 50-step DDPM, highlighting
its efficiency.

Fig. 2: Comparison of echocardiographic and brain MRI synthesis using DDPM
and MOTFM, with SPADE and ControlNet applied only to echocardiography.
The first two rows show echocardiographic images, while the last row presents
brain MRI synthesis, with numbers in parentheses indicating inference steps.

Generation Evaluations (CAMUS Dataset). To evaluate our framework,
we compare MOTFM with baselines (mentioned in "Experiments") in echo
image generation. Performance is evaluated using FID, CMMD, and KID (distri-
bution distance), IS (sample diversity), and SSIM (structural similarity) [20, 19,
10, 32, 30]. Table 1 presents the results for the CAMUS dataset, computed over
2000 generated images. MOTFM consistently outperforms baselines across most
metrics. Notably, one-step MOTFM outperforms 10-step DDPM and achieves
the same order of performance as 50-step DDPM, demonstrating superior effi-
ciency without compromising quality. While its slightly lower Inception Score
suggests a trade-off between realism and diversity, MOTFM’s substantial gains
in FID, SSIM, and CMMD establish it as a more effective and efficient alterna-
tive for echocardiographic image synthesis. We also compared inference times:
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10-step MOTFM finishes in 1.47s, much faster than 50-step DDPM (6.20s) and
approaching SPADE’s 0.68s, further underscoring its efficiency.
Generation Evaluations (MSD MRI Brain Dataset). To evaluate 3D im-
age generation on the 3D MSD brain dataset, we compare MOTFM with DDPM
for unconditional synthesis using 3D-FID, MMD (distribution distance), and
MS-SSIM (structural similarity), following prior work on 3D brain MRI gener-
ation [26, 8, 31, 5]. Table 2 reports results over 2000 generated samples, showing
that MOTFM consistently outperforms DDPM. Notably, one-step MOTFM sur-
passes 50-step DDPM in MS-SSIM and MMD and achieves competitive results in
the 3D-FID, demonstrating its efficiency and adaptability for 3D medical image
synthesis.

Table 1: Evaluation of Echocardiography Image Generation. D, M, and SD-M
represent DDPM, MOTFM, and ControlNet, respectively. "-C", "-M", and "-
CM" denote class, mask, and class + mask conditionings. The columns 1, 10, and
50 indicate the number of inference steps. The best results for each conditioning
are highlighted in bold.

FID ↓ SSIM ↑ KID ↓ CMMD ↓ IS ↑
1 10 50 1 10 50 1 10 50 1 10 50 1 10 50

D 1.9e2 22.83 1.84 .00 .08 0.29 1.6e3 62.2 1.29 5.38 1.30 1.52 1.07 3.16 2.07
M 3.04 .16 .04 .70 .65 .62 4.61 0.19 .03 1.95 .96 .50 1.16 1.42 1.39
D-C 1.9e2 15.21 4.01 .00 .10 0.27 1.6e3 22.1 5.36 5.38 1.61 1.59 1.07 2.84 1.92
M-C 1.93 .08 .06 .62 .64 0.65 2.93 .07 .08 2.15 1.73 .76 1.34 1.35 1.34
Spade .46 .54 .73 .46 1.73
D-M 1.9e2 14.58 1.61 .00 .14 .35 1.6e3 24.1 .75 5.39 1.62 1.57 1.07 2.36 1.72
SD-M 5.67 2.25 1.82 .57 .56 .63 8.87 2.37 1.99 3.42 0.42 .39 1.70 1.76 1.67
M-M 3.91 .58 .22 .72 .67 .66 5.81 .75 .23 1.29 .16 .12 1.30 1.28 1.23
D-CM 1.9e2 25.66 7.98 .00 .15 .28 1.6e3 83.8 17.05 5.39 1.37 1.23 1.07 2.67 2.13
M-CM 3.21 .07 .07 .64 .69 .70 5.01 .05 .03 1.94 .72 .64 1.34 1.34 1.33

Downstream Tasks. To further evaluate the realism of our generated im-
ages, we assess their performance in downstream tasks, specifically classification
and segmentation. We first train models (Table 3) on real training images and
evaluate them on the real test set of the CAMUS dataset. For segmentation,
UNet-ResX refer to UNet models that use ResNetX as their encoder backbones.
To compare, we train classifiers on only class-conditioned synthetic images and
segmentors on only mask-conditioned synthetic images, ensuring dataset sizes
match the real training set. All downstream models trained on synthetic data
were also tested exclusively on real ultrasound data. MOTFM generates images
in just 10 steps, whereas DDPM requires 50 steps to achieve comparable qual-
ity. As shown in Table 3, our 10-step MOTFM method outperforms the 50-step
DDPM, yielding results closer to the original distribution. This demonstrates
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Table 2: Evaluation of Brain MRI Unconditional Image
Generation. D and M represent DDPM and MOTFM
respectively. The columns 1, 10, and 50 indicate the
number of inference steps. MMD values in the tables
are divided by 1000 for readability. The best results are
highlighted in bold.

3D-FID ↓ MS-SSIM ↑ MMD ↓
1 10 50 1 10 50 1 10 50

D 146.47 51.68 29.67 .06 .51 .59 39.8 26.1 4.28
M 32.10 9.27 7.93 .66 .77 .77 .51 .25 .22

Fig. 3: KDE Plot of
Pixel Intensity Distri-
butions for Generated
and Real Echo Images.

MOTFM’s improved fidelity and efficiency, making it a more effective approach
for medical image synthesis.

Table 3: Classification and Segmentation Metrics for Echo
Classification Segmentation

Model Data ACC ↑ F1 ↑ Model Dice ↑ IOU ↑ HD ↓ ASD ↓

ResNet18
Real 0.89 0.89

UNet-Res18
0.92 0.86 16.67 3.04

DDPM (50) 0.78 0.78 0.82 0.71 88.03 10.94
MOTFM (10) 0.82 0.82 0.91 0.84 21.2 3.65

ResNet50
Real 0.88 0.88

UNet-Res50
0.92 0.87 15.02 2.84

DDPM (50) 0.78 0.78 0.73 0.59 133.18 25.66
MOTFM (10) 0.81 0.81 0.91 0.85 20.89 3.64

Generalizability to Other Medical Imaging Tasks. Our pipeline extends
beyond image generation, demonstrating versatility in tasks like denoising. We
apply it to speckle noise removal on the CAMUS dataset by adding speckle
noise with different power to clean images and training the model to recover the
original data. Instead of sampling from Gaussian noise, we initialize from noisy
images, learning a transformation between noisy and clean domains (Fig.1.b).
While denoising is not our main focus, Fig.4 shows its promising performance
across inference steps. Based on validation data, the denoised images achieve
average metrics of PSNR: 32.76, SSIM: 0.8401, and SNR: 23.02, compared to
the noisy images’ PSNR: 21.61, SSIM: 0.5802, and SNR: 11.87, highlighting its
broader potential in medical imaging.

4 Conclusion

This study introduces Optimal Transport Flow Matching framework for medical
image synthesis with diverse conditioning strategies, adaptable across modalities
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Fig. 4: Denoising Example: From a Noisy Image to a Denoised Image in 10 Steps

and dimensions. Our approach surpasses diffusion-based baselines with fewer in-
ference steps, achieving superior image quality and efficiency. Beyond synthesis,
it can be extended to tasks such as image-to-image translation and denoising.
Future work will focus on improving sample diversity with this pipeline.
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