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Abstract. Ultra-low-field (ULF) Magnetic Resonance Imaging (MRI)
improves accessibility and affordability but suffers from lower image
quality compared to high-field MRI. This study proposes a novel en-
hancement framework that integrates Implicit Neural Representations
(INRs) with Neural Style Transfer (NST) to improve ULF MRI quality
by transferring high-resolution structural details from 7T MRI. Unlike
conventional methods, our approach does not require paired datasets or
extensive pre-training, leveraging INR’s continuous representation and
NST’s perceptual refinement to enhance contrast, sharpness, and noise
suppression. Quantitative evaluations on T1-weighted ULF MRI demon-
strate significant improvements in perceptual quality (PIQE), contrast-
to-noise ratio (CNR), and structural consistency (MLC/MSLC), outper-
forming state-of-the-art methods. These findings underscore the poten-
tial of INR-driven learning for advancing MRI reconstruction, enabling
higher-quality imaging in resource-limited settings. Our method is fully
unsupervised and operates in an unpaired setting, requiring no voxel-
wise correspondence or labeled training data. The implementation of
our proposed method and model hyperparameters is publicly available
at https://github.com/khtohidulislam/ULF-MRI-Enhance.

Keywords: Ultra-low-field MRI · High-field MRI · Image Quality En-
hancement · Implicit Neural Representations · Neural Style Transfer.

1 Introduction and Background

Magnetic Resonance Imaging (MRI) is a cornerstone of non-invasive diagnostic
imaging, offering detailed insights into anatomical and functional structures.
However, image quality in MRI is largely dictated by field strength, where high-
field systems (≥ 1T ) provide superior spatial resolution, tissue contrast, image
uniformity, and signal-to-noise ratios (SNR) but are constrained by high costs,
scanner availability, infrastructure demands, and limited accessibility [22,1,2,28].

Ultra-low-field (ULF) MRI (< 0.1T ) offers a cost-effective and portable al-
ternative, expanding accessibility to under-resourced and point-of-care settings
[5,13,10,18,12,21]. However, its clinical utility is hindered by inherently low SNR,
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poor contrast resolution, and increased noise, particularly affecting gray and
white matter differentiation [4,15]. Traditional hardware-based solutions, such
as stronger gradient coils, advanced signal processing, or improved RF technol-
ogy, are often impractical due to cost and operational constraints, necessitating
computational approaches for image quality enhancement [19,16].

Recent advances in deep learning have shown promise in mitigating these lim-
itations. Unsupervised denoising methods such as Neighbor2Neighbor (N2N) [9],
DIP [26], and Noise2Void [17] enhance image quality without requiring clean-
noisy pairs, leveraging self-supervision from noisy images. However, these ap-
proaches often struggle with preserving high-frequency details in medical images.

Implicit Neural Representations (INRs) have emerged as a promising ar-
chitecture, modeling images as continuous functions over spatial coordinates.
SIREN [25] demonstrated the effectiveness of periodic activation functions in
representing fine-grained textures, while subsequent extensions, such as DINER
and WIRE, improved resolution and contrast via disorder-invariant modeling,
hierarchical representations, and wavelet representations [27,23]. Unlike DINER
or WIRE, which are optimized for natural images, our method is inspired by
emerging medical INR applications, adapted for subject-level MRI enhancement
without supervision or paired data.

Neural Style Transfer (NST) has further introduced a complementary avenue
by enabling the transfer of stylistic and structural features from high-field MRI to
ULF scans. Originally developed for artistic applications [8,14], NST has been
explored in medical imaging for harmonizing contrast and enhancing texture
detail [24]. However, its direct application remains limited due to challenges in
maintaining anatomical fidelity and suppressing artifacts.

To address these limitations, we propose a novel INR-based enhancement
framework integrated with NST to elevate ULF MRI quality (Figure 1). Our
approach leverages residual SIREN models for high-fidelity, continuous spatial
representation while integrating NST to transfer high-field MRI features without
requiring paired datasets. This synergy allows our method to enhance contrast,
suppress noise, and preserve anatomical structures more effectively than existing
approaches, surpassing state-of-the-art methods perceptually and quantitatively.

2 Method

Our framework integrates an enhanced SIREN-based implicit neural representa-
tions Framework (INR) model with residual connections to reconstruct ultra-low-
field (ULF) MRI images with high fidelity. INRs parameterize images as contin-
uous functions fθ : R2 → R, where each spatial coordinate (x, y) is mapped to an
intensity value. This continuous representation enables arbitrary-resolution syn-
thesis, facilitating high-frequency detail preservation, noise suppression, contrast
enhancement, and structural consistency while improving perceptual fidelity.

Unlike traditional convolutional models, our approach leverages periodic ac-
tivation functions to efficiently encode fine anatomical structures while main-
taining smooth spatial continuity. The architecture consists of an initial linear
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Fig. 1. The proposed framework for enhancing ULF MRI quality via INR and NST.

projection, followed by multiple residual SIREN blocks, and a final output layer.
Each residual block contains 256 neurons with sinusoidal activations, ensuring
stable feature propagation and effective learning of high-frequency textures. To
improve model convergence, we employ spectral bias mitigation through a tai-
lored weight initialization scheme, as proposed in [25].

Formally, an MRI image I is modeled as a function fθ : R2 → R, where
θ represents the trainable parameters. Given a low-field MRI image IULF ∈
RW0×H0 and a high-field reference IHF ∈ RW0×H0 , our objective is to reconstruct
a high-quality approximation ÎULF such that:

ÎULF (x, y) = fθ(x, y), where fθ = argmin
θ

Ltotal(IULF , IHF ). (1)

The total loss function Ltotal is designed to optimize perceptual quality, contrast,
structural fidelity, and texture consistency, incorporating content, style, edge
preservation, and reconstruction constraints.

Theoretical foundation of INR-Based Style Transfer: The effectiveness
of our INR-based enhancement is supported by the properties of sinusoidal ac-
tivation functions, Gram matrix-based style transfer, and residual connections.
They collectively ensure robust high-field contrast adaptation while preserving
fine anatomical structures,

1. Spectral Bias Mitigation: The use of sinusoidal activations enables INR mod-
els to capture high-frequency image details while avoiding over-smoothing,
ensuring accurate representation of fine anatomical structures [25].
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2. Feature Matching via Gram Matrices: The style loss minimizes the discrep-
ancy between Gram matrices of deep VGG features extracted from Iθ and
IHF , enforcing perceptual consistency across multiple resolution scales.

3. Residual Connections for Stability : The incorporation of residual SIREN
blocks ensures stable optimization, preventing the loss of spatial coherence
while facilitating high-contrast adaptation.

These components collectively ensure that the learned function fθ converges to
a solution that balances fine-detail preservation with high-field contrast adapta-
tion, effectively bridging the quality gap between ULF and high-field MRI.

Neural Style Transfer for High-Field Contrast Adaptation To guide the
enhancement process, we define a total loss function balancing content, style, and
reconstruction objectives. The content loss preserves anatomical structures by
minimizing feature discrepancies between the enhanced image Iθ and the ULF in-
put IULF . The style loss ensures high-field contrast adaptation by aligning Gram
matrices of deep VGG feature representations from Iθ and IHF . Additionally,
a reconstruction loss constrains Iθ to maintain structural coherence with IULF ,
preventing excessive texture hallucination. The final optimization objective is:

Ltotal = αLcontent + βLstyle + γLrecon. (2)

The trained INR model then parameterizes the enhanced image as a contin-
uous function Iθ(x, y) = fθ(x, y), allowing high-resolution synthesis at arbitrary
scales. Unlike conventional super-resolution models, our approach inherently pre-
serves fine anatomical details and adapts resolution dynamically to clinical needs.

Residual INR with Multi-Resolution Encoding A key advantage of our
framework is its multi-resolution feature matching capability, which facilitates
contrast harmonization without requiring voxel-wise correspondences. This is
achieved by computing the style loss at multiple scales using deep VGG feature
representations, ensuring perceptual consistency across anatomical structures.
Additionally, residual INR blocks improve information flow during training, mit-
igating vanishing gradients and enabling stable optimization.

The forward pass in a residual SIREN block can be expressed as:

f
(l+1)
θ (x, y) = f

(l)
θ (x, y) + σ(W (l)f

(l)
θ (x, y) + b(l)) (3)

where σ(·) is the sinusoidal activation, and W (l), b(l) are the learnable weights
and biases of layer l. This residual formulation ensures that high-frequency fea-
tures are not attenuated during training, leading to sharper reconstructions.

To further improve robustness, we introduce a spectral bias mitigation strat-
egy that ensures high-frequency details are effectively captured. This prevents
texture oversmoothing, a common issue in standard deep learning-based MRI
enhancement methods. Supervised methods typically rely on paired or multi-
contrast training data, which are not available for 64mT T1-weighted MRI.
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Therefore, we focus on unsupervised strategies compatible with the constraints
of our imaging setup. Unlike conventional CNN-based super-resolution models,
which rely on discrete convolutions and fixed receptive fields, our approach lever-
ages a continuous representation, enabling arbitrary-resolution synthesis, finer
structural preservation, and improved anatomical coherence.

3 Experiments and Results

This study was approved by the Monash University, Australia, Research Ethics
Committee, with informed consent obtained from all participants. We used T1-
weighted MRI scans from two sources: ULF images acquired with the Hyperfine
Swoop system at 64mT, processed with skull stripping and isotropic resampling
to 1 mm3 resolution, and high-field 7T images from a Siemens Magnetom scanner
[3], co-registered to the ULF scans. The superior resolution and contrast of 7T
MRI serve as a reference for unpaired style transfer, allowing our framework to
enhance ULF images without requiring voxel-wise correspondences [11].

We validate our proposed method through quantitative and qualitative as-
sessments, comparing enhanced 64mT MRI images with high-field 7T MRI ref-
erences. The implicit neural representation (INR) model, fθ, is a five-layer fully
connected network with 128 neurons per layer, leveraging sinusoidal activations
with a frequency parameter of ω = 30 [25]. The model was optimized using the
Adam optimizer (lr = 1× 10−4) over 1,000 iterations, minimizing the weighted
sum of content, style, and reconstruction losses (α = 3, β = 15, γ = 1). Experi-
ments were conducted on a NVIDIA A40 GPU.

3.1 Image Quality Assessment

Standard full-reference metrics (e.g., SSIM, PSNR, LPIPS) are not applicable
in our unpaired setting due to lack of voxel-wise correspondence. We therefore
adopt a multi-faceted assessment strategy encompassing both perceptual and
structural consistency metrics to evaluate the enhancement of ULF MRI images.
These include the Perception-based Image Quality Evaluator (PIQE) for no-
reference image quality estimation, Contrast-to-Noise Ratio (CNR) for contrast
differentiation, and two structural correlation measures—Mean Line Correlation
(MLC) and Mean Shifted Line Correlation (MSLC), to quantify local and global
consistency, spatial coherence, and edge preservation [6].

PIQE: Perceptual Image Quality Estimation PIQE provides a no-reference
image quality assessment by quantifying distortions related to sharpness, noise,
texture, artifacts, structural integrity, and perceptual fidelity. It is computed as:

PIQE = w1 · σ2 + w2 · C + w3 · σnoise, (4)

where σ2 represents the average local variance, C denotes the mean contrast
across image patches, and σnoise corresponds to the estimated noise level.
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CNR: Contrast Differentiation CNR quantifies the ability to distinguish
between anatomical structures of varying intensities while accounting for back-
ground noise, signal uniformity, tissue contrast, and diagnostic clarity:

CNR =
∆S

σnoise
, (5)

where ∆S is the intensity difference between segmented gray and white matter
regions, and σnoise represents the standard deviation of background noise.

MLC: Local Structural Consistency MLC evaluates the correlation between
adjacent rows and columns, reflecting local image consistency and suppression:

MLC =
1

N

N∑
i=1

ρ(rowi, rowi+1) + ρ(coli, coli+1), (6)

where ρ is the Pearson correlation between neighboring pixels, and N denotes
the total number of rows and columns.

MSLC: Global Structural Detail Preservation MSLC captures large-scale
structural coherence by measuring correlation between spatially distant rows and
columns:

MSLC =
1

M

M∑
i=1

ρ(rowi, rowi+H
2
) + ρ(coli, coli+W

2
), (7)

where ρ denotes the Pearson correlation, M is the number of sampled row-column
pairs, and H,W correspond to image height and width.

3.2 Quantitative Evaluation

We assessed image enhancement on 50 ULF MRI scans across 8,000 axial slices
(224×224 resolution) using PIQE, CNR, MLC, and MSLC (Table 1). PIQE de-
creased significantly (↓), indicating improved perceptual quality. CNR (with gray
and white matter segmented using FAST in FSL [20,7]) increased (↑), demon-
strating enhanced contrast between gray and white matter. MLC was highest for
our method, reflecting better local consistency. MSLC was lowest for our method,
preserving structural details while mitigating over-smoothing. Compared to N2N
[9] and SIREN [25], our approach achieved a better balance between noise sup-
pression and structural detail retention.

3.3 Qualitative Evaluation

Figure 2 visually compares enhancement results across different methods, with
7T MRI images as unpaired high-field references. Our method preserves anatom-
ical structures, reduces noise, and enhances the contrast between gray and white
matter, outperforming N2N and SIREN in structural clarity. This aligns with
our quantitative findings.
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Table 1. Comparative Analysis of Image Quality Metrics Following Enhancement.

Method PIQE (↓) CNR (↑) MLC (↑) MSLC (↓)
Baseline (64mT MRI) 67.41± 5.30 3.00± 0.20 0.9761± 0.0045 0.6024± 0.035

N2N [9] 65.01± 5.28 2.93± 0.40 0.9829± 0.0038 0.6260± 0.029
SIREN [25] 72.05± 4.85 3.15± 0.65 0.9781± 0.0052 0.6107± 0.032

Ours 50.71± 4.83 5.01± 0.32 0.9874± 0.0032 0.2090± 0.018
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Fig. 2. Comparative visualization of image enhancement methods on ULF MRIs.

3.4 Regional Analysis: ROI Comparisons

To further evaluate structural preservation, we extracted and upscaled two re-
gions of interest (ROIs) (red and blue) across all methods. Our approach main-
tains sharper edges and finer structural details while suppressing noise, suggest-
ing superior preservation of tissue boundaries (Figure 3(A)). Additionally, we
incorporated scatter plots, (Figure 3(B)), comparing contrasts between CSF to
GM, and CSF to WM, further demonstrating the enhanced contrast preservation
of our method in differentiating these tissue types.



8 K. T. Islam et al.

N
2N

64
m
T

O
ur

SI
RE

N

A B

Fig. 3. Comparison of two ROIs (A) extracted and upscaled, highlighting differences
in structural detail, edge sharpness, and noise reduction. Scatter plots (B) for contrasts
between CSF to GM and CSF to WM, respectively, across all datasets.

3.5 Ablation Study:

We evaluated six configurations (Table 2): (1) Baseline (64mT MRI), (2) NST
only, (3) INR only, (4) INR + NST (Shallow VGG: conv1_1, conv2_1), (5) INR
+ NST (Mid-Level VGG: conv1_1 to conv4_1), and (6) INR + NST (Full VGG:
conv1_1 to conv5_1). NST alone improves perceptual quality (lower PIQE)
but struggles with structural preservation (higher MSLC), while INR enhances
local consistency (higher MLC) but lacks contrast enhancement (lower CNR).
Combining INR and NST progressively improves all metrics, with deeper VGG
features further enhancing contrast, edge sharpness, and structure retention. The
full VGG configuration achieves the best overall performance, highlighting the
importance of multi-scale feature extraction in MRI enhancement.

Table 2. Ablation Study on the Impact of INR, NST, and VGG Feature Selection.

Configuration PIQE (↓) CNR (↑) MLC (↑) MSLC (↓)
Baseline (64mT MRI) 67.41± 5.30 3.00± 0.20 0.9761± 0.0045 0.6024± 0.035

NST Only 60.92± 5.10 3.71± 0.38 0.9786± 0.0037 0.5703± 0.031
INR Only 61.23± 5.18 3.42± 0.35 0.9805± 0.0039 0.5802± 0.032

INR + NST (Shallow VGG) 58.77± 5.02 3.85± 0.28 0.9828± 0.0036 0.5405± 0.030
INR + NST (Mid-Level VGG) 54.91± 4.95 4.42± 0.34 0.9852± 0.0034 0.3809± 0.025

INR + NST (Full VGG) 50.71± 4.83 5.01± 0.32 0.9874± 0.0032 0.2090± 0.018
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4 Conclusions

This work introduces an INR-NST framework to enhance ULF MRI by transfer-
ring high-field features, improving contrast, sharpness, and noise reduction with-
out requiring paired datasets or extensive pre-training. Quantitative evaluations
demonstrate superior perceptual quality, contrast, and structural consistency
over existing methods like N2N and SIREN. The unpaired and fully unsuper-
vised nature of our framework makes it particularly suitable for low-resource
imaging settings such as 64mT MRI. While effective, our approach incurs in-
creased training and inference time due to deep feature extraction and residual
blocks, with potential sensitivity to high-field style selection. Future work will
explore 3D extensions and task-aware priors to enhance generalization across
MRI contrasts and scanner variations, further advancing INR-driven solutions
for robust and scalable ULF MRI enhancement.
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