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Abstract. The spatiotemporal changes of a developing anatomical struc-
ture is a dynamic process, and quantifying this process within a popu-
lation and between populations is a fundamental yet challenging task
in medical image analysis. Central to this task is the availability of
longitudinal imaging data for 4D statistical shape analysis. Unfortu-
nately, this type of longitudinal data is expensive, time-consuming, and
difficult to collect. Practically, the majority of imaging data are 3D
cross-sectional data, which are inadequate in describing the dynamic
shape changes of anatomical structures. In this paper, we introduce a
novel temporal atlas-guided deep learning model for longitudinal data
generation. Unlike existing methods that directly generate longitudinal
data from input images or sequences, we characterize distinctive geomet-
ric shape representations in both cross-sectional and longitudinal latent
spaces of diffeomorphisms, while optimizing the quality of both atlas
and longitudinal data generation. To the best of our knowledge, this
is the first deep learning approach that leverages temporal atlas-based
representation for longitudinal data generation. The innovative nature
of our framework lies in its ability to jointly perform within-age and
cross-age shape registration, thus maximizing registration performance
while maintaining desirable deformation qualities. Our work’s ability to
model spatiotemporal dynamics makes it highly versatile and applicable
to a wide range of domains, including modeling the normal and ab-
normal development of anatomical structures for improved clinical di-
agnosis and treatment planning. The code of this work is available at
https://github.com/wushaoju/TAG-GLE.
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1 Introduction

The spatiotemporal changes of a developing anatomical structure is a dynamic
process, influenced by a complex interplay of various factors including genetics,
nutrition, environment, and disease [23, 4, 6]. Quantifying this dynamic process
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within a population and between populations is a fundamental yet challeng-
ing task in medical image analysis. Central to this task is longitudinal imaging
data, which consist of repeat imaging of the same subject taken at different time
points. This type of data is perfectly suited for capturing the spatiotemporal
changes of a developing anatomical structure. Investigators have analyzed longi-
tudinal data for a variety of important clinical applications, including tracking
the maturation of a child’s anatomy [17, 5], determining the progression of dis-
ease [15, 14], monitoring organ response to therapy [18, 12], isolating structural
differences in congenital anomalies over time [8, 20], and predicting patient out-
comes [24, 11]. In recent years, learning-based methods have emerged as power-
ful tools for modeling 4D spatiotemporal data in clinical contexts. For example,
Yoon et al. [29] introduced a sequence-aware diffusion model to generate tempo-
rally consistent 3D brain MRIs, while Puglisi et al. [19] used a latent diffusion
model trained on longitudinal MRI data to simulate Alzheimer’s-related struc-
tural changes over time. Despite promising results, these models typically require
large-scale longitudinal training datasets, which are rarely available in practice.
In contrast, most available medical imaging data are cross-sectional, generated
at a single time point from multiple individuals. Cross-sectional imaging data
are inadequate in describing the dynamic spatiotemporal changes of developing
anatomical structures. They also do not provide information about cause-and-
effect relationships, as these data represent only a snapshot in time, encoding
information from a single moment. Ideally, to study the complex dynamic nature
of a developing structure, we would need subject-specific 3D longitudinal data
(i.e., 4D data) to capture the time-varying structural changes. These 4D data
encode the inherent correlations and causalities of repeated acquisitions from
the same subject, and provide not only population (i.e., average) trajectories of
change, but also individual (i.e., subject-specific) profile changes. Furthermore,
these 4D data provide improved statistical power over cross-sectional data. In
short, longitudinal imaging data is the data type of choice in capturing and un-
derstanding the temporal profile of a developing anatomical structure. However,
they are expensive, time-consuming, and difficult to collect, hence they are in
short supply.

Contribution. We propose a novel deep learning (DL)-based framework that
jointly performs two different but related medical image analysis tasks, specifi-
cally, atlas building and longitudinal data generation. The goal of atlas building
is to map a large number of images onto a common coordinate system, thereby al-
lowing us to study intra-population variabilities and inter-population differences
[13, 9, 30]. This task is focused on capturing population trajectories of change. In
contrast, the goal of longitudinal data generation is to capture subject-specific
trajectories of change. In essence, our model jointly performs within-age shape
registration for atlas building, and cross-age shape registration for longitudinal
data generation, with the goal of improved spatiotemporal characterization of
developing anatomical structures. We believe that by integrating these two tasks
within a unified framework, they leverage each other’s strengths in improving
their individual performances. Fundamental to our proposed framework is the
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strategic use of diffeomorphic non-rigid registration to optimize a smooth and
invertible transformation between two anatomical shapes [22, 26].

2 Background: Atlas Building

Before introducing our framework, we briefly review the concepts of atlas build-
ing in the context of large deformation diffeomorphic metric mapping (LD-
DMM) [3], and its relationship to deformation-based shape representations.
Given a set of images I1, · · · , IN with N being the number of images in the
set, the problem of atlas building is to find a mean or template image I and
transformations ϕ1, · · · , ϕN that minimize the energy function

E(I, vn0 ) =

N∑
n=1

1

σ2
Dist[I ◦ ϕ−1

1 (vn0 ), In] + Reg(vn0 ), (1)

where σ2 is the noise variance in images, and ◦ denotes a composition operator.
Solving vn0 and ϕ−1

1 (vn0 ) involve the geodesic shooting process which states that
the geodesic path {ψt} can be uniquely determined by integrating a given initial
velocity v0 forward in time by using the Euler-Poincaré differential (EPDiff)
equation [1, 16] as follows:

∂vt
∂t

= −K
[
(Dvt)

T ·mt +Dmt · vt +mt · div vt
]
,

dϕ−1
t

dt
= −Dϕ−1

t · vt, (2)

where the operator D denotes a Jacobian matrix, and · represents element-
wise matrix multiplication. Here, div is the divergence, and K is a smoothing
operator with its inverse operator given by L (a symmetric and positive-definite
differential operator). Note that L : V → V ∗ maps a tangent vector vt ∈ V
into its dual space as a momentum vector mt ∈ V ∗. This is typically denoted as
mt = Lvt or vt = Kmt.

The atlas-guided shape representations vn0 efficiently capture the structural
variations over different populations and enhance the performance across various
image processing tasks [27, 31]. Expanding on this idea, we develop shape repre-
sentations by building temporal atlases in the latent space, then evolving them
as distinctive geometric features for longitudinal data generation. Our longitudi-
nal data generation model effectively preserves anatomical consistency over time
despite having sparse cross-sectional data.

3 Methodology

In this section, we introduce our model that learns latent shape embeddings
simultaneously in the cross-sectional and longitudinal space. We show the overall
network architecture in Fig. 1. We drop the time index t, i.e., v0

∆
= v, to simplify

the notations in the following sections.
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Fig. 1. Overview of our model. Training: Our network constructs a sequence of tempo-
ral atlases, starting at age q and modeling deformations across target ages. A geometric
embedding loss in the latent space enforces structured, biologically meaningful anatom-
ical evolution. Iterative refinement enhances the interplay between cross-sectional and
longitudinal dynamics, generating anatomically coherent cross-age data. Inference:
For each subject, we first align their baseline images to the corresponding age-specific
atlas. The trained model Ψ operates as a longitudinal data generator, synthesizing
anatomically plausible trajectories for unseen subjects by extracting geometric fea-
tures through the atlas. It uses generated velocity fields from cross-age registration
between age-specific atlases to deform subject-specific structures over time, ensuring a
smooth and temporally consistent evolution.

Temporal Atlas Building. Given a set of discrete time points, we aim
to construct a temporal atlas that captures the morphological evolution across
these time points. Specifically, we build a sequence of atlases, where each atlas
characterizes the average anatomical structure at time q. The temporal atlas
construction involves optimizing the parameters Θ of a neural network that
defines the atlases Aq and their inter-relationships over time. The corresponding
temporal atlas loss function is defined as:

Ltempo-atlas(Θ) =

Q∑
q=1

Nq∑
i=1

Dist
[
ϕ−1
q→i(Θ) ◦Aq, I

q
i

]
+ Reg(vqi ), s.t. Eq. (2). (3)

Cross-age Image Registration. We introduce the network with param-
eters Ψ to model the longitudinal anatomical changes. Specifically, given that
cross-sectional data Iqi is longitudinally sparse, we align the source atlas Aq

to the longitudinal images {Imq′ }Mm=1 of target age q′ using the transformation
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ϕq→q′ . As such, the longitudinal registration loss is given by:

Llongitudinal(Ψ) =

M∑
m=1

Dist[ϕ−1
q→q′(Ψ) ◦Aq, I

m
q′ ]

2 + Reg(vq
′

m), s.t. Eq. (2). (4)

Distinctive Latent Embeddings. We define the loss between the latent
embeddings learned from Eq. (3) and Eq. (4) as:

Llatent(Z) = E(zi
q,z

m
q′ )

[
− log(σ(sim(ziq, z

m
q′ )))

]
+ λE(zi

q,z
m
q′ )

[
Corr

(
∥ziq − zmq′∥2, ∥viq − vmq′ ∥2

)]
, (5)

where the first term is the similarity term that computes the expected loss
over pairs of embeddings ziq and zmq′ . Here, sim(·, ·) is the cosine similarity,
where sim(z1, z2) = z1·z2

∥z1∥∥z2∥ , and σ denotes the sigmoid function. Minimizing
− log(σ(.)) enforces high similarity for related embeddings (e.g., positive pairs),
while penalizing low-similarity cases. This encourages related embeddings to
cluster tightly in latent space. The second term measures the weighted corre-
lation between the squared Euclidean distance of the embeddings, ∥ziq − zmq′∥2,
and the squared distance of the associated velocity fields, ∥viq − vmq′ ∥2, thereby
ensuring that the latent space preserves the geometric or temporal relationships
encoded by the velocity fields. The parameter λ controls the strength of this
alignment. This latter term encourages the latent space to capture meaningful
geometric or temporal differences indicated by the velocity fields. By employing
the distinctive geometric embeddings in the temporal atlas-building and longi-
tudinal registration spaces, we derive our total loss function as:

ℓ = Ltempo-atlas(Θ) + Llongitudinal(Ψ) + γ Llatent(Z), (6)

where γ controls the strength of the latent embeddings alignment. This func-
tion enforces within-age shape consistency by clustering anatomically similar
structures while preserving between age morphological changes through velocity-
guided embedding distances, effectively disentangling progressive shape varia-
tions across time.

4 Experiments

To demonstrate the effectiveness of our proposed framework, we conducted both
quantitative and qualitative experiments between our model and state-of-the-art
(SOTA) techniques in atlas building and longitudinal data generation.

Dataset & Preprocessing. We retrospectively collected cross-sectional and
longitudinal computed tomography (CT) datasets of normal male hips for train-
ing and evaluation, respectively. For training, we curated a cross-sectional CT
dataset from male patients with normal hips acquired between 2011 and 2015.
To ensure normality, we excluded patients with (1) hip pain, (2) congenital or
developmental musculoskeletal anomalies, and (3) prior hip trauma. This search
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yielded 77 CT studies from 77 male patients (mean age: 10.4 ± 3.8 years; range:
4-18 years), totaling 154 hips. For longitudinal analysis, we searched the same
archive (2010–2024) and applied the same inclusion and exclusion criteria. We
included only patients with at least two CT studies obtained more than one
year apart. This search identified 12 male patients with 34 CT studies (mean
age: 10.2 ± 3.3 years; range: 4–16 years), totaling 68 hips. We segmented both
left and right hips from all CT images using the pre-trained TotalSegmenta-
tor [28] and rigidly aligned them to a template hip image space (2563 voxels,
1 mm resolution). To ensure computational efficiency and maintain consistency
across all models, the images were downsampled to 1283 voxels, allowing for fair
and standardized comparisons.

Training Setup. We utilized Geo-SIC [27] as the backbone architecture for
training our model in atlas building and longitudinal data generation. The model
was trained for 1000 epochs with a batch size of 4, using the Adam optimizer
with a learning rate of 0.0005. Training required approximately 4 hours per age
on a Quadro RTX A6000 GPU. All implementations were based on PyTorch
2.0.1. Additionally, we performed a sensitivity analysis using a grid search to
optimize the registration parameter γ in Eq. (6), and we identified the optimal
value as 0.0001.

Atlas Evaluation. To evaluate the quality of the generated temporal hip
atlas, we computed the accuracy of atlas-to-patient registration for each spe-
cific age (from 4- to 18-years-old) and compared it other SOTA techniques.
Specifically, we utilized the mean surface distance (MSD) and the Dice score
to compare the results of our atlas building technique to those generated via
B-spline [7], Multi-contrast registration (M-c. reg.) [25], VoxelMorph (VM) [2],
and our method without the distinctive latent embedding (l.e.) loss.

Longitudinal Data Evaluation. We assessed our longitudinal hip data
generator by comparing synthetic hip CTs to real ones using Dice scores. For
each patient, a real hip CT was used to generate a synthetic version matching
the age of the next real CT in the dataset. The Dice score was computed between
the real and synthetic CT scans. For example, given real CTs at ages 8, 10, and
13, we used the 8-year-old CT to generate a synthetic 10-year-old CT, which
we then compare to the real 10-year-old CT scan. This process was repeated
for subsequent ages. We benchmarked our method against two alternatives: (1)
Nearest-Age Hip Approximation (NAHA) with the idea derive from [21], which
utilizes the real hip CT that is nearest in age to the target hip CT data to
approximate longitudinal changes of the same subject (in essence neglecting
age-based changes), and (2) Age-Based Atlas Approximation (ABAA)[10], which
relies on general age-specific atlases rather than subject-specific data.

5 Results and Discussion

Fig. 2 showed that our temporal atlas generation method outperformed SOTA
atlas building models, producing sharper, more anatomically accurate atlases
with fewer artifacts. Other methods often introduced blurry boundaries and
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Fig. 2. Comparison of our method with SOTA techniques for temporal hip atlas gener-
ation. The age ranged from 4- to 18-years-old. Visually, our method achieved the best
performance in atlas building, producing the sharpest boundaries around the growth
centers of the hips (i.e., around the tri-radiate cartilages) and the margins of the hip
bones (i.e., around the ilium and ischium) compared to other SOTA techniques.

Fig. 3. Boxplots of the atlas-to-patient (within-age) registration results based on the
mean Dice score (a) and the MSD (b). Boxplots of the longitudinal data generation
results for all testing cases (c) and for the cases when the age gap is >1 year (d) based
on mean Dice score. The ages of the subjects in these experiments ranged from 4 to 18
years. Our method achieved superior performance compared to others.

distortions, particularly near the iliac crest, as seen in the 14-year-old tempo-
ral atlas where the VM method [2] exhibited substantial artifacts around the
posterior iliac crest, while the M-c. reg. [25] and B-Spline [7] methods showed
similar but less severe distortions. In contrast, our approach generated atlases
with well-defined, artifact-free boundaries, preserving fine anatomical details.

Fig. 3a and Fig. 3b quantitatively demonstrated the superiority of our method,
achieving the highest mean Dice score of 0.97 and the lowest mean surface dis-
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tance (MSD) of 0.36 mm. These results highlighted our method’s robustness
in capturing temporal shape variations with high precision, ensuring more accu-
rate spatiotemporal characterization of hip development for clinical and research
applications.

Fig. 3c and Fig. 3d showed quantitatively our method’s performance for
longitudinal data generation across all models. Our proposed method achieved
the highest mean Dice score of 0.88, demonstrating superior accuracy in cap-
turing temporal hip shape changes. Notably, the performance variations across
baseline methods indicated that age-related factors significantly impact longitu-
dinal shape prediction, particularly for cases with larger age gaps. This further
highlighted the robustness of our approach in modeling complex temporal de-
formations, ensuring more reliable and anatomically consistent predictions over
time.

Fig. 4 presented a case study on longitudinal data generation, illustrating the
generated images with shape trajectories produced by all models. Our method,
guided by the temporal atlas, demonstrated the closest alignment with ground
truth hip surfaces, even when predicting shapes with large age gaps (e.g., using
a 12-year-old hip CT to predict the corresponding 15-year-old hip CT). This
underscored the effectiveness of our method in modeling spatiotemporal hip
growth solely from cross-sectional data, generating anatomically consistent and
accurate longitudinal data predictions.

6 Conclusion

In this work, we introduced a temporal atlas-guided DL framework to gener-
ate longitudinal data using only cross-sectional inputs. Our approach leverages
geometric latent spaces of diffeomorphisms to optimize both atlas quality and
the fidelity of shape progression. By jointly performing within-age and cross-
age registration, our model improves accuracy while preserving anatomically
consistent deformations. This framework provides a powerful tool for modeling
normal and pathological anatomical development, with applications in clinical
diagnosis and disease progression analysis. Additionally, generating high-quality
synthetic longitudinal data helps address the scarcity of real datasets, advancing
research in medical imaging and computational anatomy. Future work includes
integrating patient-specific growth models with biomechanical priors to improve
prediction accuracy. Enforcing physics-based constraints and leveraging hybrid
statistical-DL models may enhance robustness and personalization.
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Fig. 4. Comparison of various methods for the longitudinal data generation task based
on a real longitudinal dataset. For example, in the first column, given an input hip
dataset from a 4-year-old subject (source), the longitudinal data generator predicted
the 3D synthetic longitudinal CT hip shape of the same subject at the age of 5. The
source and target ages are denoted in green text in the left upper corner of each frame.
The segmentation contour (blue dashed line) produced by our method aligns better
with the ground truth contour (yellow line) than other techniques, as indicated by the
higher Dice scores (white text). Arrows highlight regions with large alignment errors.
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