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Abstract. Fairness is an important principle in medical ethics. Vision
Language Models (VLMs) have shown significant potential in the medical
field due to their ability to leverage both visual and linguistic contexts,
reducing the need for large datasets and enabling the performance of
complex tasks. However, the exploration of fairness within VLM applica-
tions remains limited. Applying VLMs without a comprehensive analysis
of fairness could lead to concerns about equal treatment opportunities
and diminish public trust in medical deep learning models. To build trust
in medical VLMs, we propose Fair-MoE, a model specifically designed
to ensure both fairness and effectiveness. Fair-MoE comprises two key
components: the Fairness-Oriented Mixture of Experts (FO-MoE) and
the Fairness-Oriented Loss (FOL). FO-MoE is designed to leverage the
expertise of various specialists to filter out biased patch embeddings and
use an ensemble approach to extract more equitable information rele-
vant to specific tasks. FOL is a novel fairness-oriented loss function that
not only minimizes the distances between different attributes but also
optimizes the differences in the dispersion of various attributes’ distribu-
tions. Extended experiments show that Fair-MoE improves both fairness
and accuracy across all four attributes. Code is made publicly available at
https://github.com/LinjieT /Fair-MoE-Medical-Fairness-Oriented-Mixture-
of-Experts-in-Vision-Language-Models.
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1 Introduction

Fairness is a key principle of medical ethics [5,24]. It requires that diagnostic
systems avoid systematically disadvantaging specific groups based on inherent
or acquired characteristics [22,20,21]. A key fairness concern in medical field
is diagnostic disparity [2,33,29], where certain groups receive lower accuracy,
leading to poorer health outcomes and exacerbating healthcare inequities. As
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Vision-Language Models (VLMs) become increasingly prevalent in medical im-
age analysis [15,16,3,7,25,17,14,13], they offer a promising solution by integrating
medical image-report pairs directly, bypassing the need for time-intensive man-
ual annotation. VLMs process visual and textual data simultaneously, leveraging
both to tackle complex tasks. However, despite their success in disease diagno-
sis, VLMs still inherit and propagate fairness issues, often embedding biases due
to imbalances in training datasets or insufficient representation of specific de-
mographic groups [20,0,12,28]. Biases inherent in both images and text make
addressing fairness in VLMs particularly challenging [20]. Ensuring fairness in
VLM-based diagnostics is therefore crucial to prevent unintended harm and pro-
mote equitable healthcare outcomes.

While fairness research in vision-only models has progressed, there is a critical
gap in datasets for evaluating and mitigating bias in VLMs [10,11,19,31,32,34].
The recent release of the Harvard-FairVLMed dataset, the only fair-target VLM
dataset, offers a unique opportunity to address these challenges in medical VLMs
by providing image-text pairs on glaucoma, ground truths, and protected at-
tributes [20]. While FairCLIP [20] has been proposed as a fairness benchmark
using this dataset, it retains CLIP’s original architecture and minimizes Sinkhorn
distance [23], limiting its ability to effectively learn fair information. This gap ne-
cessitates a new VLM model that improves both accuracy and fairness, focusing
on extracting relevant information while ignoring biased information. A Mixture
of Experts (MoE)-based approach offers a promising solution [3], as it leverages
multiple experts to collaboratively process domain-specific information, enhanc-
ing learning capacity and harnessing fairness to obtain bias-free features. Recent
advances in MoE [26,18,1,35,9] have further enhanced learning capabilities. The
superior learning ability of MoE demonstrates potential in facilitating fair and
relevant information extraction while mitigating bias and filtering out irrelevant
information. However, applying MoE to fair VLMs for medical diagnostics is
underexplored, representing a significant opportunity for development [4,27].

To address the aforementioned issues and pursue more equitable VLMs, we
propose the first MoE-based model for fair medical vision language model: the
Fair Medical Vision Language Mixture of Experts (Fair-MoE). This model com-
prises two key modules: Fairness-Oriented Mixture of Expert (FO-MoE) and
Fairness-Oriented Loss (FOL). FO-MoE is the first MoE designed for fair VLMs,
utilizing expert capacity to filter bias in patch embeddings. This enhances the
model’s ability to extract fair, task-relevant information while minimizing bias.
Unlike other fairness losses that focus solely on distance between protected at-
tributes, FOL introduces a novel fair load balance loss function, considering both
distance and dispersion between these attributes. In this way, it can not only
guarantee fairness but also enhance the learning ability of the MoE. The main
contributions can be summarized as follows:

— We propose Fair-MoE, a new framework combining FO-MoE and FOL to
advance fairness and eliminate human biases in medical VLMs.
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Fig.1. An illustration of Fair-MoE. MoE-based architecture with FO-MoE enables
model to extract fair information. Model is trained through contrastive learning with
novel fair loss FOL added.

— To enhance task relevance while mitigating bias in extracted features, we
propose FO-MoE module, the first fairness-oriented MoE module explicitly
designed for medical VLM applications.

— To address biased attributes by considering their feature space distance and
dispersion, we propose FOL, a novel fairness-aware loss.

2 Method

Fig. 1 demonstrates pipeline of Fair-MoE. Firstly, in the Image and Text En-
coder, attention blocks are stacked to extract features from text and image.
Multi-head attention computed in the last attention block is fed into FO-MoE
consisting of Patch Embedding-based MoE and Feature-Based MoE to obtain
bias-free text and image features. Finally, the similarity between bias-free text
and image features and the loss function FOL are used to further optimize the
distance and dispersion of bias attributes in the feature space.

2.1 Fairness-Oriented Mixture of Expert (FO-MoE)

To enhance learning ability and avoid learning biased content directly from im-
ages, we propose FO-MoE in the image and text encoder. We replace the MLP
layer in the last attention block of each encoder with a Patch Embedding-
based MoE layer to filter out biased patch embeddings and place a Feature-
based MOoE layer after the encoders to extract fair and relevant to specific
tasks information. Each MoE layer comprises multiple experts, which are MLPs
designed to capture and learn distinct aspects of information from the inputs.
Additionally, the input passes through a gating mechanism, also implemented
as a MLP, which assigns a weight to each expert. The weight indicates the like-
lihood that an expert should process the input, and output is aggregated by
weighted summing outputs of experts.



4 Wang et al.

Patch Embedding-based MoE: The input to the patch embedding-based
MOoE, denoted as I' € RWHD*D  consists of N + 1 patch embeddings of di-
mension D, extracted from the input image or text. A gating mechanism, G* :
RWV+DXD _y RINFDXM' aosions a weight to each embedding for each of the M1
experts. To enhance learning efficiency using the sparse MoE approach [26], and
to ensure fair and task-relevant information extraction, each patch embedding is
routed to the K; experts with the highest assigned weights. To mitigate bias, a
capacity parameter C, defining the maximum number of embeddings an expert
can process, is introduced. The weight matrix aggregating expert outputs is given
by: W = Top,(Top, (W', K1), %), where W1 = softmax(G*(I')), and
Top,(-, k) and Top,.(+, k) denote the operations that retain the k largest elements
in each column and row, respectively. The workflow of Patch Embedding-based
MokE is illustrated in Fig. 2.

Feature-based MoE: Feature vector I3 € RP will be sent to a Feature-based
MoE with M? experts that further eliminates biased information to get the fair
feature. The structure of Feature-based MoE is shown in Fig 2. The output
W?2 = Top,(softmax(G?(13)),k?) that keeps highest k% weights from gates
G2 : RP — RM” is used to aggregate outputs from experts to obtain a more
fair visual feature vector I3 = éviz_l WfEf (13). Wf is a scalar indicates b th
element in Wf E2(x) denotes bth experts in Feature-based MoE.

2.2 Fairness-Oriented Loss (FOL)

Optimizing the variance of weights to aggregate outputs from different experts
enhances the learning capacity of the MoE by achieving load balance across
the experts [18]. Furthermore, variance, as a measure of distribution dispersion,
plays a critical role in fairness. By optimizing the dispersion differences between
distributions of protected attribute groups, disparities in these distributions can
be reduced. Building on this principle, we can improve existing fairness loss
functions which focus on optimizing distance between distribution of protected
attribute groups to decrease disparities among different distributions of protected
attribute groups [20,30] by leveraging variance utilized to load balance loss to
develop a fair loss (FOL), that takes both distance and dispersion into account.

In FOL, the weight output by a gate for a certain expert is selected as a
random variable. Take Patch Embedding-based MoE in image encoder as an
instance to compute FOL, all weights W computed from data sampled from the
whole dataset and certain protected attribute group p are denoted as On, Onp,
respectively. To optimize dispersion between different attribute’s distribution,
model should optimize difference of weight’s variance of different attribute’s
distribution. Thus, loss for Patch Embedding-based MoE of image is Fg; =
> opep Z?ilo_l(Var(ONj) —Var(Onyp,))?* where Oy, Oyjp, denote jth column
of On, Op|p which denote all expert j’s weights. Var(-); means compute variance
of input. P is a set of groups for certain attribute. In the same way, loss for
Patch Embedding-based MoE of text Fgr, loss for Feature-based MoE of image
Fr; and loss for Feature-based MoE of text Fpp can be gotten. Finally, FOL
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Table 1. Main Results of Fair-MoE. The green text highlights our method.

Attr. Model ES-AUC AUC DPD EOD
CLIP/bl6 62.67+3.15 67.70+£3.13 14.57+3.77 18.4745.12
CLIP/114 66.83+2.19 70.63+2.98 11.69£3.85 15.13£2.66
Race FairCLIP/b16 61.17+1.87 67.47£1.16 10.16+10.05 11.44+11.07
FairCLIP/114 67.53+4.26 71.57+£2.94 16.01£5.87 17.03£3.74
Fair-MoE/b16 69.63£1.21 71.93£0.90 7.2545.13  7.431+3.04
Fair-MoE /114 72.53£1.07 73.93+0.97 2.63+0.65 4.25+0.75
CLIP/b16 63.30£2.73 67.70£3.13 2.79+1.49  7.52+4.78
CLIP/114 66.30+2.63 70.63+£2.98  3.13£2.60  7.5613.54
Gender FairCLIP/b16 64.43+1.86 68.47+£2.26 2.50£1.47  4.984+3.74
FairCLIP/114 67.37+1.62 70.80+1.84 2.114+1.81  5.24+1.46
Fair-MoE/b16 68.07+0.96 71.97£1.16 1.91+1.02 3.53£0.90
Fair-MoE/114 69.971+3.39 74.97+2.90 2.9441.60 7.33+2.55
CLIP/b16 64.87+2.26 70.63+£0.90 7.53£2.96 14.83£3.01
CLIP/114 64.13+1.58 69.37£1.04 8.74+0.41  9.13£0.69
Ethnicity FairCLIP /b16 61.43+1.05 67.33£1.33 10.54%+1.52 17.93+4.01
FairCLIP /114 64.23+1.11 69.23+£0.92 15.37£2.17 15.77+3.17
Fair-MoE/b16 65.17+2.44 69.77£0.49 8.52+3.19 8.4242.77
Fair-MoE /114 67.10+4.70  72.80+2.54 8.79+2.91 13.90+5.86
CLIP/b16 60.10+3.84 67.70£3.13 13.50£3.96 16.40+9.56
CLIP/114 59.90£2.01 69.37£1.04 17.27£0.74 20.1746.09
Language FairCLIP /b16 57.97+0.65 68.07£0.57 10.96+4.04 14.2549.09
FairCLIP /114 63.57+£1.97 72.40+1.84 8.21+1.99 11.00+£1.25
Fair-MoE /b16 63.60+£1.85  73.87+1.62 7.48+4.56 12.30%2.65
Fair-MoE /114 63.80+1.28  71.37£2.10 15.67£2.99 23.63+14.40
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Table 2. Results of ablation study for FO-MoE.

Attr. Model ES-AUC AUC DPD EOD
FairCLIP /b16 61.17+1.87 67.47+1.16 10.16+10.05 11.44+£11.07
Race FairCLIP /114 67.53+4.26 71.57£2.94 16.01+£5.87 17.03+3.74

FairCLIP/b16 w. FO-MoE| 69.97+2.60 72.67+1.16 3.194+2.04 9.48+3.74
FairCLIP/114 w. FO-MoE | 65.53+4.74 67.10£3.85 13.37£8.32 13.24+6.93

FairCLIP /b16 64.43+1.86 68.47+2.26 2.50+1.47 4.98+3.74
FairCLIP/114 67.37+1.62 70.80+£1.84 2.11+1.81 5.244+1.46
FairCLIP/b16 w. FO-MoE| 67.63+1.82 71.37+2.30 3.14+1.14 7.70+1.66
FairCLIP/114 w. FO-MoE | 64.33+1.83 68.67+1.87 4.2543.08  7.2243.17

FairCLIP /b16 61.43+1.05 67.33+1.33 10.54£1.52 17.93+4.01
FairCLIP /114 64.23£1.11 69.23+£0.92 15.37£2.17 15.77£3.17
FairCLIP/b16 w. FO-MoE| 66.70+3.30 69.17+£2.57 6.94+4.40 9.58+4.11
FairCLIP/114 w. FO-MoE | 66.57+3.94  71.60+2.71 11.724+2.35 15.97+0.78

FairCLIP /b16 57.97+0.65 68.07+0.57 10.96£4.04 14.25%+9.09
FairCLIP /114 63.57+1.97 72.40+1.84 8.21+1.99 11.00+1.25
FairCLIP/b16 w. FO-MoE| 62.47+2.53  72.53+1.09 11.97+3.87 23.20+2.12
FairCLIP /114 w. FO-MoE | 62.33+0.68 65.17+£0.90 10.43+£0.42 9.65+3.05

Gender

Ethnicity

Language

3 Experiment

3.1 Experimental Setup

Experiments are conducted on the sole fairness-focused medical dataset, Harvard-
FairVLMed [20], which comprises 7,000 training samples, 1,000 validation sam-
ples, and 2,000 test samples. Each sample in the database includes an SLO fundus
image, accompanying clinical notes, labels of image-text pairs and protected at-
tributes such as the patient’s race, gender (GEN), ethnicity (ETH), and language
(LAN). To fairly compared with the baselines, the training protocol was aligned
with that of the FairCLIP [20]. All experiments were conducted on an NVIDIA
GeForce RTX 3090 GPU. The Area Under the Curve (AUC) is utilized to mea-
sure the model’s overall performance. To assess fairness, the Demographic Parity
Difference (DPD) and Equal Opportunity Difference (EOD) are used. Addition-
ally, the Equity-Scaled AUC (ES-AUC) is introduced to evaluate the trade-off
between performance and fairness.

3.2 Comparison with Baselines

To evaluate the performance and fairness of Fair-MoE in medical images, two
State-of-the-Art (SoTA) fairness-aware VLMs, i.e., Vanilla and FairCLIP, are
chosen as the baselines. Table 1 demonstrates the results of comparing Fair-
MoE with CLIP and the SoTA fair medical vision language model Fair-CLIP.
For ES-AUC, Fair-MoE outperforms all baselines in all protected attributes. For
attribute race, Fair-MoE outperforms baselines 5.00% in ES-AUC. For AUC that
measures effectiveness of model, Fair-MoE also outperforms all baselines in all
protected attributes. For attribute gender, Fair-MoE achieves 4.91% improve-
ment in AUC. For DPD and EOD that measure the fairness of model, results
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Fig. 3. Case study for Fair-MoE on effectiveness and fairness.

of DPD show that Fair-MoE achieves better fairness than baselines in all at-
tributes. Besides, results of EOD show that Fair-MoE achieves better fairness
than baselines in attributes of race, gender, and ethnicity.

The results prove that in addition to achieving a better trade-off between

effectiveness and fairness, Fair-MoE can both improve effectiveness and fair-
ness. The parameter counts for CLIP/B16, FairCLIP/B16, and Fair-MoE/B16
are approximately 200M, while those for CLIP/L14, FairCLIP/L14, and Fair-
MoE/L14 are approximately 500M. These results demonstrate that Fair-MoE
achieves improvements in both accuracy and fairness without a significant in-
crease in model parameter count, maintaining computational efficiency while
enhancing performance and fairness.
Case Study: Case study shown in Fig. 3 visualizes how Fair-MoE surpasses
FairCLIP and CLIP in both effectiveness and fairness. Fig. 3 (a) illustrates that
for glaucoma images from both male and female subjects, CLIP and FairCLIP
misclassify them as non-glaucoma, whereas Fair-MoE correctly identifies them,
demonstrating its effectiveness. Fig. 3 (b) shows that while the diagnostic fea-
ture distributions extracted by CLIP and FairCLIP differ significantly between
genders, the distribution obtained by Fair-MoE is more similar across genders,
highlighting its fairness.

3.3 Ablation Study

The ablation study for FO-MoE: To assess performance of FO-MoE, FO-
Mok is added to fairCLIP. Table 2 demonstrates results of ablation study of FO-
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Table 3. Results of ablation study for FOL. The green texts highlights our method.

Attr. Model ES-AUC AUC DPD EOD
Fair-MoE/b16 w/o FOL| 69.974+2.60 72.67£1.16 3.19£2.04 9.484+3.74
Race Fair-MoE /114 W/O, FOL| 65.53+4.74 67.10+3.85 13.37£8.32 13.24+6.93
Fair-MoE/b16 69.63+1.21 71.93+£0.90 7.254+5.13  7.43£3.04
Fair-MoE /114 72.53+£1.07 73.93+0.97 2.63%£0.65 4.25+0.75
Fair-MoE/b16 w/o FOL| 67.63+1.82 71.37£2.30 3.14£1.14  7.70+1.66
Gender Fair-MoE /114 W/O FOL| 64.33£1.83 68.67+1.87 4.254+3.08  7.22+3.17
Fair-MoE /b16 68.071+0.96 71.97+1.16 1.91+£1.02 3.53+0.90
Fair-MoE /114 69.97+£3.39 74.97+2.90 2.94+£1.60 7.33+2.55
Fair-MoE/b16 w/o FOL| 66.70+3.30 69.17+2.57 6.94+4.40 9.58+4.11
Ethnicity Fair-MoE/114 w/o FOL| 66.57+£3.94 71.60£2.71 11.72+2.35 15.974+0.78
Fair-MoE /b16 65.17+2.44 69.77+0.49 8.524+3.19  8.4242.77
Fair-MoE /114 67.10+£4.70 72.80+2.54 8.79£291  13.945.86
Fair-MoE/b16 w/o FOL| 62.474+2.53 72.53+£1.09 11.97£3.87 23.20£2.12
Language Fair-MoE/114 w/o FOL| 62.334+0.68 65.17+£0.90 10.43+£0.42 9.65+3.05
Fair-MoE /b16 63.60+1.85  73.87+1.62 7.48+4.56 12.30£2.65
Fair-MoE /114 63.80+1.28  71.37£2.10 15.67+2.99 23.63+14.4

Table 4. Results of ablation study on different components in Fair-MoE in ES-AUC.

(a) Ablation Study on Fgr,Fer, Fri, Frr
Race GEN ETH LAN Model
70.9 70.4 70.7 66.1 Fair-MoE /114

Race GEN ETH LAN
74.0 69.5 73.4 64.1

Model
Fair-MoE/b16

Fair-MoE/b16 w/o Frr
Fair-MoE/b16 w/o Fgr
Fair-MoE/b16 w/o Frr
Fair-MoE/b16 w/o Frr

62.2 65.4 58.7 60.0
62.4 62.0 64.4 58.3
70.4 56.5 61.9 61.7
60.9 69.8 62.2 48.7

Fair-MoE/114 w/o Fgr
Fair-MoE/114 w/oFar
Fair-MoE/114 w/o Frr
Fair-MoE/114 w/oFrr

71.4 62.8 64.7 62.5
64.3 59.2 69.6 62.4
69.2 63.0 63.4 59.6
69.3 64.6 70.1 59.7

(b) Ablation study on

Patch Embedding-bas

ed MoE (EM) and Feature-based M

oF (FM)

Model

Race GEN ETH LAN

Model

Race GEN ETH LAN

Fair-MoE /b16
Fair-MoE/b16 w/o EM
Fair-MoE/b16 w/o FM

70.9 70.4 70.7 66.1
66.2 68.1 53.5 62.9
64.0 66.5 66.3 61.0

Fair-MoE /114
Fair-MoE/114 w/o EM
Fair-MoE /114 w/o FM

74.0 69.5 73.4 64.1
68.6 66.9 62.0 62.2
72.2 65.4 72.1 60.8

(c) Ablation study on MoE modules in Text and Image
Model Race GEN ETH LAN Model Race GEN ETH LAN
Fair-MoE/b16 70.9 70.4 70.7 66.1 Fair-MoE /114 74.0 69.5 73.4 64.1

72.1 61.3 64.0 63.8
66.8 65.3 64.3 58.7

66.8 67.2 61.3 63.6
69.4 66.8 64.6 54.8

Fair-MoE/114 w/o Text FO-MoE
Fair-MoE/114 w/o Image FO-MoE

Fair-MoE/b16 w/o Text FO-MoE
Fair-MoE/b16 w/o Image FO-MoE

MokE. Utilizing FO-MoE achieves higher AUC for all attributes, demonstrating
that FO-MoE can achieve higher learning capabilities and advanced effectiveness.
For majority of attributes, applying FO-MoE can achieve higher ES-AUC, which
indicates that adding FO-MoE achieves a better trade-off between effectiveness
and fairness. For attribute race and ethnicity, applying FO-MoE can both im-
prove effectiveness and fairness. This phenomenon proves FO-MoE’s ability to
filter out bias patch embedding and extract more fair task-relevant information.
The ablation study for FOL: To assess performance of FOL, we remove FOL
from Fair-MoE, Table 3 shows how removing FOL from Fair-MoE will affect
performance of Fair-MoE. In the case of removing FOL for all four attributes,
metrics that measure effectiveness and fairness deteriorate significantly. Remov-
ing FOL leads to a drop of 2.56% in AUC for race and 2.34% in ES-AUC for
gender. The drop in performance proves that just minimizing the distance be-
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tween different attributes’ distribution is not enough. Thus, optimizing difference
between dispersion of attributes’ distribution is indispensable to achieve a leap
in both effectiveness and fairness. In addition, optimizing dispersion can improve
stability of MoE, letting Fair-MoE better filter out bias patch embedding and
utilize its supreme learning capacities to extract fair feature.

The ablation study for detail components: To assess components of FO-
MoE and FOL, Table 4 (a) examines the impact of removing Fg;, Fer, Frr,
and Frr, revealing a degradation of trade-off between fairness and performance
across all attributes without each FOL component. Table 4 (b) evaluates Patch
Embedding-based MoE and Feature-based MoE, demonstrating that both con-
tribute to a better balance between fairness and performance. Table 4 (¢) inves-
tigates the application of FO-MoE to the image and text encoders, showing that
integrating FO-MoE into both enhances the fairness-performance trade-off.

4 Conclusion

We propose Fair-MoE, a novel method designed to harness fairness in VLMs,
enhancing both their effectiveness and fairness in medical diagnosis. Fair-MoE in-
cludes two key components: FO-MoE and FOL. FO-MOokE is designed to learn
unbiased features and filter out biased information. Meanwhile, FOL not only
optimizes the distance between different protected attributes but also enhances
the dispersion among them, guiding the model towards greater fairness and
effectiveness. Extensive experiments demonstrate the superiority of Fair-MoE.
Detailed ablation studies and visualization provide evidence of the effectiveness
of each component within Fair-MoE.
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