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Abstract. Unsupervised video-based surgical instrument segmentation
has the potential to accelerate the adoption of robot-assisted proce-
dures by reducing the reliance on manual annotations. However, the
generally low quality of optical flow in endoscopic footage poses a great
challenge for unsupervised methods that rely heavily on motion cues.
To overcome this limitation, we propose a novel approach that pin-
points motion boundaries, regions with abrupt flow changes, while se-
lectively discarding frames with globally low-quality flow and adapting
to varying motion patterns. Experiments on the EndoVis2017 VOS and
EndoVis2017 Challenge datasets show that our method achieves mean
Intersection-over-Union (mIoU) scores of 0.75 and 0.72, respectively, ef-
fectively alleviating the constraints imposed by suboptimal optical flow.
This enables a more scalable and robust surgical instrument segmen-
tation solution in clinical settings. The code is publicly available at
https://github.com/wpr1018001/Rethinking-Low-quality-Optical-Flow.git.
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1 Introduction

Instrument segmentation is a key component of robotic-assisted surgeries, pro-
viding improved guidance and supporting decision-making. It is also essential
for some other AI-driven surgical tasks, such as workflow recognition [11,10,17],
action identification [15], and tracking [2].

Although deep learning has made significant progress in fully- [23,14,13,18,6]
and semi-supervised [21,22] segmentation, these approaches rely heavily on man-
ual annotations, which increases the workload and limits their application. In
contrast, we focus on unsupervised segmentation to enhance surgery understand-
ing without any additional manual effort. Early unsupervised approaches in sur-
gical tasks mostly focuesd on workflow analysis [1] and motion prediction [3],
while instrument segmentation has received less attention. Liu et. al. [9] used
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Fig. 1. Example of some low-quality optical flow frames, including stationary instru-
ments, dark areas and abrupt movements, which greatly limit the model performance.

unsupervised techniques and basic handcrafted cues for segmentation. However,
their approach’s reliance on specific signals limits its adaptability across different
surgeries.

Motion plays an essential role in visual processing and is widely utilised in
unsupervised models like RAFT [19] to effectively capture movement in videos.
Sestini et. al. [16] introduced FUN-SIS, which integrates realistic instrument seg-
mentation masks (referred to as shape-priors) from various datasets with optical
flow information. Despite its novelty, FUN-SIS’s dependency on the shape-priors
and its non-end-to-end nature limited its applicability. Recently, Lian et. al. [7]
brought forward RCF, a fully unsupervised model for video object segmentation
(VOS), demonstrating the critical role of motion. The success of RCF highlights
the importance of optical flow quality in unsupervised learning, establishing a
new benchmark for instrument segmentation without manual annotations.

Unlike the high-quality optical flow found in natural videos, surgical footage
often suffers from low flow quality due to the factors such as dark areas, abrupt
movements, and stationary instruments, as shown in Fig. 1. Following the ap-
proach of the RCF model [7], we aim to reduce the impact of low-quality optical
flow on our model. Liao et al. [8] highlighted the importance of accurately seg-
menting boundaries, a task complicated by the blurred boundaries in surgical
optical flow. Inspired by Super-BPD [20], we employ angular measurements to
detect these unclear boundaries in the flow, ensuring the model focuses on the
most reliable region. Additionally, the frequent presence of low-quality optical
flow in surgery videos presents a notable challenge. To address this, we drop
the most difficult samples in each batch. Furthermore, the subtle movement of
certain instruments, often not captured by optical flow, can reduce the model
sensitivity. By varying frame rates beyond the standard, we enhance the detec-
tion of these less visible movements.

2 Method

We target the challenge of unsupervised surgical instrument segmentation within
a video stream of T frames, denoted as XT = {xi|i ∈ {1, ..., T}}, where xi

represents the image of the i-th frame. The objective is to create a mapping
function f such that f(xi) produces a mask that extracts the area of the surgical
instrument. It is important to note that instrument mask annotations are not
employed during the training stage.
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Fig. 2. Overview of our proposed unsupervised instrument segmentation framework.
Two frames, separated by a random interval r, are fed into both a motion-guided seg-
mentation model (e.g. RCF [7]) and a pre-trained Motion Estimator ( e.g. RAFT [19])
that generates pseudo flow maps ot. The proposed HQAM and LQCD modules refine
these pseudo flow maps, yielding a robust supervision.

We adopt the first stage of the state-of-the-art (SOTA) RCF model [7] as our
backbone, thanks to its fully end-to-end design and independence from shape-
priors. However, the optical flow in surgical videos often suffers from dim light-
ing, abrupt instrument or camera movements, and partially stationary objects
(Fig. 1), creating significant challenges for unsupervised segmentation. To ad-
dress these issues, we introduce a High-Quality Area Matching (HQAM)
block that emphasizes reliable flow regions, a Low-Quality Case Dropping
(LQCD) mechanism to discard frames with severely compromised flow, and a
variable frame-rate scheme to better capture subtle instrument motions. The
overall architecture of our method is illustrated in Fig. 2.

2.1 High-Quality Area Matching

Accurate motion cues derived from optical flow are essential for unsupervised
instrument segmentation. However, in surgical videos, these cues often fail to
capture the interior of instruments, particularly in low-light or partially station-
ary scenarios (Fig. 1), resulting in missed motion signals. If such incomplete cues
are used for training, they risk propagating errors. In contrast, regions closed to
the flow changes abruptly (motion boundaries) typically provide more reliable
signals. Building on this insight, we propose a novel High-Quality Area Match-
ing (HQAM) module, as shown in Fig. 3, that selectively emphasizes these high-
contrast motion areas. By directing supervision toward the most trustworthy
regions, HQAM mitigates the impact of missed interior motion and significantly
improves segmentation performance.



4 Y. Liu et al.
0.2 0.8 1.5 2.5 1.8 2.1 0.4 1.9

在此处键入公式。

��

��

Motion Boundary

High Quality Area

����

HQAM

0.2 0.8 1.5 2.5 1.8 2.1 0.4 1.9
� × 1

0.2 0.8 1.5 2.5 1.8 2.1 0.4 1.9

0.2 0.4

�����ℎ

Hard Cases Selection

Hard Cases Drop

(� − ℎ) × 1

LQCD

Fig. 3. Illustration of our HQAM and LQCD modules. HQAM derives a boundary-
based mask from pseudo optical flows ot, isolating reliable high-quality regions to guide
segmentation. Meanwhile, LQCD ranks each frame in a batch by its per-frame loss and
discards the top h “hard cases”, removing globally low-quality motion signals.

Initially, we transform the optical flow representation oi ∈ RH×W×2, encod-
ing motion vectors in two dimensions (horizontal and vertical movements), into
a directional format θi ∈ RH×W , where H and W represent the height and width
of the image frame, respectively. This conversion calculates the angle θpi of the
optical flow at each pixel position p = (j, k). Specifically, the direction angle θpi
at position p is obtained through the formula:

θpi = arctan 2(oj,k,xi , oj,k,yi ),

where oj,k,xi and oj,k,yi are the horizontal and vertical components of the optical
flow vector at the pixel p, respectively. Next, we define the directional difference
at each pixel p as follows:

δpi = max
np∈Np

1

|θpi − θn
p

i |,

where N p
1 signifies the 4-neighbourhood of pixel p, including the adjacent pixels

in both the vertical and horizontal orientations. To demarcate boundary regions,
we introduce a difference threshold α = π

12 . This leads to the creation of the
boundary mask Mi, where a value of 1 is assigned to pixels that meet the con-
dition δpi > α, indicating the presence of a boundary, while a value of 0 denotes
areas without boundaries. To enhance the supervision diversity, a simple dilation
technique is employed to broaden the areas under supervision. Specifically, for
every boundary pixel satisfying δpi > α, we set Mi(N p

d ) to 1, where d represents
the dilation distance. Consequently, we define the instance-level optical flow loss
by averaging the per-pixel loss over the entire image domain Ω:

Lins =

∑
p∈Ω Mi(p)

∥∥oi(p) − ôi(p)
∥∥2∑

p∈Ω Mi(p)
.
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2.2 Low-Quality Cases Drop

While HQAM addresses local flow inaccuracies, we observe that low-quality op-
tical flow often spans the entire frame rather than being confined to specific re-
gions. In other words, frames with degraded local flow typically exhibit inferior
quality overall. To tackle this issue, we propose a frame-level drop mechanism
Low-Quality Cases Drop (LQCD), as shown in the right of Fig. 3, that discards
globally problematic frames. Specifically, for a batch of B training images, we
identify and remove the top h frames with the highest losses (the “hard cases”),
leaving us with a subset Sremain of B − h frames. Our final batch-level loss is
then computed as:

Lbatch =
1

|Sremain|
∑

xi ∈Sremain

Lins(xi).

By removing globally low-quality flow cases, we strengthen the reliability of
frame-level supervision and reduce error propagation.

2.3 Variable Frame Rates Training Input

Despite establishing reliable supervision mechanisms, instruments that frequently
remain stationary pose a challenge to effective training due to the scarcity of
meaningful optical flow supervision samples in these regions. To overcome this
limitation, we introduce a strategy of feeding training images with variable frame
rates, (xi, xi+r), where the interval between adjacent frames, r, is a random num-
ber within the range of 1 to 3, instead of being fixed at r = 1. This variability
ensures that the optical flow can capture the motion of instruments that typically
exhibit little or no movement, thereby facilitating more effective training.

3 Experiments

3.1 Datasets and Evaluation Metrics

We implemented our experiments on datasets from the MICCAI EndoVis 2017
Robotic Instrument Segmentation Challenge. This dataset features 8 sets, each
with 225 frames of stereo camera footage recorded by the da Vinci Xi surgi-
cal robot during various pig surgery procedures. Each frame has been metic-
ulously annotated by experts, with identifed distinct parts of robotic surgical
instruments. These instruments have been further categorised into rigid axes,
articulated wrists, grommets, and a miscellaneous category for additional in-
struments like laparoscopic tools or drop-in ultrasound probes. We explored two
variations of the EndoVis 2017 dataset for our study: EndoVis 2017 VOS and
EndoVis 2017 Challenge. The VOS version includes laparoscopic tools and ul-
trasound probes as per Sestini et al. [16], while the Challenge version adheres
to the original competition guidelines by excluding the ‘other label’ category. In
the evaluation, we followed the same conventions and the same data partition-
ing and performed a 4-fold cross-validation on both the VOS and the challenge
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Table 1. Comparison with SOTA supervised methods and unsupervised methods.
Mean IoU (%) is reported. And the results of prior works are quoted.

Annotation Shape-priors Stage Method EndoVis 2017VOS EndoVis 2017Challenge
100% No 1 TernausNet [18] 89.06 83.60
100% No 1 MF-TAPNet [6] 89.61 87.56
0% Yes 1 FUN-SIS(Stage1) 40.08 37.03
0% Yes 2 FUN-SIS(Stage2) 74.78 68.31
0% Yes 3 FUN-SIS(Stage3)[16] 83.77 76.25
0% No 1 AGSD [9] 71.47 67.85
0% No 1 RCF(Stage1) 46.09 46.17
0% No 2 RCF(Stage2)[7] 49.18 49.19
0% No 1 RCF(Stage1) + Ours 75.07 72.07

versions of the dataset [6]. Our main evaluation metric is the mean Intersection-
over-Union (mIoU), consistent with the benchmarks set in the MICCAI EndoVis
2017 Challenge and subsequent research in the field.

3.2 Implementation Details

We chose the RCF framework [7] as the backbone for our model, leveraging
a ResNet50 [5] for feature extraction, which feeded into both a segmentation
and a residual prediction head. The optical flow was derived using the RAFT
model, pretrained on synthetic datasets - FlyingChairs [4] and FlyingThings [12],
without any human-annotated data. Our implementation was based on PyTorch
and runs on a single NVIDIA A100-PCIE-40GB GPU. The batch size was set
to 8, with the h = 6 hard cases to ensure frame-level supervision quality. For
boundary dilation, a kernel size of d = 7 was used.

3.3 Comparison with State-of-the-art Methods

Our findings on the EndoVis 2017 VOS and EndoVis 2017 Challenge datasets
are presented in Table 1. We compared our method with the AGSD [9] and FUN-
SIS [16] methods, which were both tailored to surgical video segmentation, and
RCF [7], that was originally designed to segment natural images. Our method
advanced the RCF model, delivering an end-to-end solution without relying on
shape-priors for annotations. The enhancements we had implemented lead to
substantial performance enhancements, showing a 28.98 percentage points (pp)
and 25.93 pp increase over the original RCF model on the EndoVis 2017 VOS and
Challenge datasets, respectively. This demonstrated our approach’s capability
to refine the use of low-quality optical flow. Moreover, when measured against
AGSD, our fully unsupervised method presented gains of 3.6 pp and 4.22 pp for
the respective datasets, marking the first instance of a purely unsupervised model
using optical flow outperforming those dependent on crafted pseudo-labels. Our
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Fig. 4. Qualitative comparisons with the baseline model RCF, showing (a) optical flow
pseudo-labels obtained by RAFT prediction (b) Ground Truth from EndoVis 2017,
offering (c) Prediction masks of our method (d) Prediction masks of RCF.

model also showed an edge over the FUN-SIS’s second stage, surpassing it by
0.29 pp and 3.76 pp on the VOS and Challenge versions, respectively.

Fig. 4 showcases comparative visual examples between our method and the
baseline RCF model. Although RCF struggles with the typically low optical flow
in surgical videos, our model excels, showing impressive results even in areas with
challenging flow conditions. Particularly in detailed areas, such as the instrument
head at case frame 58, our approach not only matches but also surpasses the
ground truth.

3.4 Ablation Study

To ensure fairness and generalisability, all our experiments employ a 4-fold cross-
validation on the EndoVis 2017 VOS dataset. We conducted extensive ablation
studies to evaluate the impact of our proposed three key components: HQAM,
LQCD and variable frame rates training input (Variable).
Different Components of the Method. Table 2 presents the ablation study
results of our proposed approach. Starting with the baseline model (first row), we
observe a modest performance of 46.09% mIoU. Introducing LQCD alone raises
the mIoU to 47.15%, confirming that discarding frames with severely degraded
optical flow helps reduce noisy supervision. When we further integrate HQAM,
the performance jumps significantly to 74.47% mIoU. This demonstrates the im-
portance of leveraging more reliable boundary cues for instrument segmentation
in unsupervised settings. Finally, adding the variable frame-rate strategy pro-
duces a slight yet consistent improvement, achieving our best result of 75.07%
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Table 2. The effects of different components in
method.

Function Metric
LQCD HQAM Variable mIoU(%)

46.09
✓ 47.15

✓ 70.66
✓ ✓ 74.47
✓ ✓ ✓ 75.07

Table 3. Different parameters of
HQAM.

Parameters Metric
α d mIoU(%)

π
12

7 68.34
3 66.04
1 67.81

π
6

7 68.74
3 66.03
1 66.21

π
3

7 70.66
3 67.03
1 64.74

mIoU, which indicates that adapting to different temporal intervals provides
complementary gains. Overall, these findings highlight the effectiveness of each
component and underscore their synergistic contributions to improving unsuper-
vised instrument segmentation.
Parameter Analysis of HQAM. We investigate the impact of two key HQAM
hyperparameters: the angle threshold α ∈

{
π
12 ,

π
6 ,

π
3

}
and the dilation kernel size

d ∈ {1, 3, 7}. In these experiments, HQAM is the only enhancement used (i.e.,
both LQCD and variable frame rates are disabled). As shown in Table 3, the best
performance (70.66%) is achieved at α = π

3 and d = 7, a substantial improve-
ment over the 46.09% baseline without HQAM. Although performance does vary
across hyperparameters, an expected outcome in an unsupervised setting, every
tested configuration with HQAM significantly surpasses the baseline, highlight-
ing the method’s overall robustness and effectiveness. In our default setting, we
adopt more conservative parameters (α = π

12 , d = 7) for broader generalization
in diverse surgical scenarios. Nevertheless, the consistent gains under different
hyperparameter choices underscore HQAM’s adaptability and confirm its value
in unsupervised instrument segmentation.

4 Conclusion

In this study, we presented an unsupervised surgical instrument segmentation
method that integrates High-Quality Area Matching (HQAM), Low-Quality
Cases Dropping (LQCD), and variable frame rates to address the challenges
posed by low-quality optical flow. Evaluated on the MICCAI EndoVis 2017 VOS
and Challenge datasets, our approach achieves mIoU scores of 0.75 and 0.72, re-
spectively, effectively reducing the reliance on manual annotations in clinical
environments. Notably, our method features a plug-and-play design, allowing
easy extension to other motion-driven tasks such as unsupervised depth estima-
tion. While our experiments reveal certain hyperparameter sensitivities, common
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in unsupervised settings, this limitation also highlights a promising direction for
future research aimed at enhancing the robustness and generalizability of our
framework.
Disclosure of Interests. The authors have no competing interests to declare
that are relevant to the content of this article.
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