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Abstract. Cell microscopy data are abundant; however, correspond-
ing segmentation annotations remain scarce. Moreover, variations in cell
types, imaging devices, and staining techniques introduce significant do-
main gaps between datasets. As a result, even large, pretrained segmen-
tation models trained on diverse datasets (source datasets) struggle to
generalize to unseen datasets (target datasets). To overcome this general-
ization problem, we propose CellStyle, which improves the segmentation
quality of such models without requiring labels for the target dataset,
thereby enabling zero-shot adaptation. CellStyle transfers the attributes
of an unannotated target dataset, such as texture, color, and noise, to
the annotated source dataset. This transfer is performed while preserv-
ing the cell shapes of the source images, ensuring that the existing source
annotations can still be used while maintaining the visual characteris-
tics of the target dataset. The styled synthetic images with the existing
annotations enable the finetuning of a generalist segmentation model
for application to the unannotated target data. We demonstrate that
CellStyle significantly improves the cell segmentation performance across
diverse datasets by finetuning multiple segmentation models on the style-
transferred data. The source code for CellStyle is publicly available at
https://github.com/ruveydayilmaz0/cellStyle.
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1 Introduction

Automated cell segmentation is essential for biomedical research, facilitating
the extraction and analysis of cellular morphology and spatial organization [6].
However, achieving accurate instance segmentation remains challenging due to
the substantial variability in imaging modalities, cell types, and staining proto-
cols [10,23]. This is caused by domain shifts, leading to failed generalization when
applied to unseen microscopy datasets with different characteristics [15]. To ad-
dress this, previous studies [11,16,24] have proposed generalist models trained on
diverse datasets to enhance applicability across different datasets. Often, these
generalist models are finetuned on the target dataset by a human-in-the-loop
approach [24] or through pre-generated labels [16, 21, 24]. Alternatively, other

https://github.com/ruveydayilmaz0/cellStyle


2 R. Yilmaz et al.

%

: Average cell size ratior

+

Xtgt XstyMGTsrc

r

Pretrained
Seg. Model

Baseline Prediction

❄

Seg. Model
"

a) Cell Size Matching c) Downstream Task

Improved Prediction

M pred
tgt

Target: 

Styled output: 

Source: z t=Tsrc

z t=Tsty

z t=Ttgt

Qsrc

Ktgt , Vtgtz t=0tgt

z t=0src

z t=0sty

: Adaptive score scaling factorα

Reverse Generation

Reverse Generation

T

T

T

Styled Image Generation

t : 0 → T

t : T → 0

t : 0 → T

xtgt

xsty

xsrc

α

r ×

In
fe

re
nc

e

b) Style Transfer

Fi
ne

tu
ni

ng

Fig. 1: Overview of the CellStyle pipeline: (a) Cell Size Matching: the average cell
length in Xtgt is estimated using a pretrained segmentation model and compared
to Xsrc, to compute the cell size ratio r which is used to scale xtgt; (b) Style
Transfer: the pretrained diffusion model generates xsty based on xtgt and xsrc;
(c) Downstream task: Xsty and ground truth labels MGT

src from Xtgt are used to
finetune segmentation models.

studies [1,8,25,26,28,29] have addressed the challenge of cell instance segmenta-
tion using classical methods, diffusion models or generative adversarial networks
(GANs) by generating annotated synthetic images derived from a limited set
of labeled real data or by domain transfer, which adapts the visual features
from one dataset to another one [2, 12, 15, 17, 27]. The generated images are
then utilized as training datasets for instance segmentation models. Although
there are improvements in the segmentation quality, these models require su-
pervised [1,2,8,15,25,28,29] or unsupervised [12,17,27] training of a generative
model or manual adjustments to the simulated image models [26].

In this work, we introduce CellStyle, a method designed to enhance the in-
stance segmentation performance for cell microscopy images without requiring
annotation labels for the target dataset. CellStyle leverages existing annotated
datasets to address the limitations of generalist zero-shot segmentation methods.
It achieves this by adapting key visual attributes of microscopy images—such
as texture, color, and noise—from an unannotated target dataset to an anno-
tated source dataset using a pretrained diffusion backbone. This transformation
preserves the original cell shapes, allowing the generated images to retain the
annotations of the source dataset while ensuring they reflect the visual charac-
teristics of the target dataset. By finetuning pretrained segmentation models
on style-transferred images paired with source annotations—without using any
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labels from the target dataset—we enable a form of zero-shot adaptation, where
the model can be applied directly to the unannotated target data. Our main
contributions are threefold: (1) To the best of our knowledge, CellStyle is the
first work proposing zero-shot domain transfer for cell microscopy imaging with-
out requiring the training of a generative model. (2) We generate a diverse set of
synthetic datasets that can be used to improve the downstream task performance
on target data. (3) Experimental results demonstrate that CellStyle significantly
enhances the zero-shot performance of cell segmentation models across various
datasets.

2 Method

Diffusion models are generative models designed to synthesize data from pure
noise by learning a data distribution [14]. Training involves progressively adding
noise to a clean image sample and learning to predict this noise using the fol-
lowing loss function:

L(θ) = Ex,ϵ,t

[
∥ϵ− ϵθ (xt, t)∥2

]
, (1)

where ϵ is the noise added to a clean image x0 and ϵθ(xt, t) is the prediction for
this noise based on xt, t and the learned parameters θ.
The inference begins with a pure noise sample xT and a clean image is iter-
atively generated over T steps. Denoising Diffusion Implicit Models (DDIMs)
follow the same training procedure but achieve significantly faster inference [22].
This is accomplished by formulating the diffusion process as a non-Markovian
model, in contrast to the Markovian process used in [14]. As a result, during
inference, DDIMs can generate images of comparable quality in approximately
50 iterations, rather than requiring T ∼ 103 iterations. Building on DDIMs, La-
tent Diffusion Models further improve inference speed by performing diffusion
in a spatially compact latent space [20]. An autoencoder [9] is used to encode
the images into latent representations before the diffusion process and recon-
struct them back into the image space after the diffusion process. To enable
style transfer on cell microscopy images without requiring additional training
of a generative model on labeled data, we adopt Stable Diffusion (SD) as our
diffusion backbone, which leverages this latent diffusion architecture.

To adapt an annotated source image xsrc to a target image xtgt with no an-
notations, we incorporate the finding outlined in [4, 13]. The finding shows that
queries (Q) in the SD UNet attention blocks govern the shapes and spatial lay-
outs of the generated objects, while keys (K) and values (V ) control the other
visual attributes such as texture, color, brightness, etc. Specifically, after encod-
ing the images xsrc and xtgt into the lower-dimensional representations zt=0

src and
zt=0
tgt using the autoencoder from SD, we predict their corresponding noisy latent

representations zt=T
src and zt=T

tgt by simulating a reverse generation process from
t = 0 to t = T [22]. During this reverse process, we cache the queries (Qsrc)
corresponding to ztsrc and keys and values corresponding to zttgt (Ktgt and Vtgt)
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Table 1: The selected pairs (Xsrc, Xtgt) for the experiments, the calculated av-
erage cell size ratios r, and the computed adaptive score scaling ratios α.

Pair Xsrc Xtgt r α Pair Xsrc Xtgt r α

1 MP6843 Fluo-MSC 1.0 1.5 4 Fluo-HeLa Fluo-GOWT1 2.5 1.1
2 Huh7 DIC-HeLa 3.0 1.5 5 SHY5Y MP6843 3.5 1.2
3 BV-2 Fluo-HeLa 2.1 1.2 6 NuI Kidney NuI Cardia 1.0 1.0

at multiple levels of the self-attention blocks in the decoder of the SD UNet.
Next, starting with zt=T

sty = zt=T
src , we generate the styled latent zt=0

sty correspond-
ing to xsty using Qsrc, Ktgt and Vtgt (see Fig. 1). However, directly applying this
approach to pairs of cell microscopy images can result in weak style transfer,
depending on the disparity in average cell sizes between the datasets Xsrc and
Xtgt. This issue arises because when computing Attention(Qsrc, Ktgt, Vtgt), im-
age patches from different images may lack strong feature correspondences when
object sizes differ significantly. To address this, we first compute the average cell
lengths for both Xsrc and Xtgt and use the resulting cell size ratio r to resize
the images in Xtgt before performing style transfer. The cell lengths for Xsrc are
derived from the ground truth (GT) annotations MGT

src , while a pretrained seg-
mentation model [16] is used to predict the annotations Mpred

tgt for approximating
the average cell lengths in Xtgt (see Fig. 1a).

Another important consideration is the decrease in the attention map values
obtained with (Qsrc, Ktgt) compared to the original self-attention maps. This is
because the correspondence between Q and K is higher when they are derived
from the same image. To account for this, [4] computes the average standard
deviation ratio between the original self-attention scores and those generated
using Q and K from different images. The attention scores are then scaled based
on this ratio to maintain consistency. However, when generating data across
different dataset pairs with varying degrees of similarity, using a fixed scaling
ratio for attention scores is not optimal (the corresponding experimental results
are given in Section 3). Instead, we propose computing this ratio separately for
each dataset pair, which we term as adaptive score scaling ratio α. Prior to
performing style transfer, the standard deviations of the attention scores are
computed across a small set of randomly selected samples from Xsrc and Xtgt.
These values are then averaged over all diffusion timesteps T to calculate α.
Subsequently, during style transfer, the attention maps computed between Qsrc

and Ktgt within the self-attention blocks of SD are scaled accordingly.

3 Experiments

Datasets: We conduct experiments using publicly available datasets, including
MP6843 from the Cell Image Library [30]; BV-2, Huh7, and SHSY5Y from Live-
Cell [7]; DIC-C2DH-HeLa (DIC-HeLa), Fluo-N2DL-HeLa (Fluo-HeLa), Fluo-
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Fig. 2: Sample qualitative results (xsty) for each pair along with the correspond-
ing source (xsrc) and the target (xtgt) images.

C2DL-MSC (Fluo-MSC), and Fluo-N2DH-GOWT1 (Fluo-GOWT1) from the
Cell Tracking Challenge (CTC) [19]; and human kidney and cardia datasets
from NuInsSeg [18].
Experimental Setup: We conduct our experiments using the pretrained SD
v1.5 model with 50 diffusion timesteps. The experiments also include the use
of different numbers of timesteps; however, due to space limitations, we cannot
include those results in this paper. For each dataset pair, we pick 4,000 combina-
tions {(xi

src, x
i
tgt)}4000i=1 from (Xsrc, Xtgt) and generate the corresponding styled

images {xi
sty}4000i=1 using an Nvidia L40S GPU. During the generation process,

we extract Qsrc, Ktgt, and Vtgt from the last six attention layers of the model to
be used when generating Xsty. To demonstrate the capabilities of CellStyle, we
present experimental results on six dataset pairs (see Table 1). The pairings are
made based on the morphological characteristics of the cells in the images, with
nuclei images paired with other nuclei images and cytoplasm images paired with
other cytoplasm images. Additionally, Table 1 provides the predicted average
cell size ratios (r) and the adaptive score scaling ratios (α) computed for each
dataset pair.
Evaluation Methods: We evaluate CellStyle on the downstream task of in-
stance segmentation using Cellpose [24], Stardist [21], and Mediar [16]. First, we
assess the performance of the pretrained models on Xtgt and then finetune them
separately on Xsrc and Xsty using the models’ default parameter configurations.
The training data for the base Cellpose model originally contains images from
the MP6843 dataset. For proper experimentation on pairs 1 and 5, we man-
ually remove those images from the training dataset and train Cellpose from
scratch. This modified version of the base Cellpose model is used exclusively for
experiments on these pairs, while the original base model is applied to all other
pairs. Stardist was originally trained on images featuring star-convex shapes,
limiting its applicability to other cell shapes. Therefore, we train it from scratch
on the Cellpose training data for better generalization. The training data for
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Table 2: The quantitative results for Cellpose [24], Stardist [21], and Mediar [16]
for each pair. For each segmentation model, the performance of the base model,
the finetuned model on Xsrc, and Xsty are given.

Method
Pair 1 Pair 2 Pair 3 Pair 4 Pair 5 Pair 6

SEG DET SEG DET SEG DET SEG DET SEG DET SEG DET

Cellpose 0.20 0.30 0.79 0.55 0.76 0.92 0.90 0.0 0.62 0.66 0.31 0.54
Cellpose+Xsrc 0.48 0.72 0.69 0.55 0.76 0.92 0.45 0.22 0.0 0.0 0.52 0.82
Cellpose+Xsty 0.62 0.83 0.81 0.85 0.81 0.95 0.79 0.93 0.76 0.89 0.55 0.83

Stardist 0.0 0.08 0.26 0.21 0.75 0.95 0.69 0.94 0.36 0.46 0.10 0.18
Stardist+Xsrc 0.02 0.10 0.28 0.22 0.64 0.84 0.41 0.82 0.01 0.0 0.52 0.80
Stardist+Xsty 0.28 0.56 0.60 0.77 0.77 0.94 0.87 0.98 0.32 0.47 0.56 0.81

Mediar 0.26 0.58 0.83 0.96 0.66 0.95 0.85 0.94 0.67 0.85 0.48 0.71
Mediar+Xsrc 0.24 0.59 0.83 0.96 0.68 0.96 0.77 0.95 0.66 0.84 0.57 0.87
Mediar+Xsty 0.31 0.54 0.85 0.97 0.77 0.97 0.87 0.98 0.69 0.90 0.58 0.89

the pretrained Mediar contains a collection of datasets, including Cellpose [24],
DataScienceBowl 2018 [3], LiveCell [7] and Omnipose [5]. Again, to ensure proper
experimentation, we exclude the images used in our experiments from the Me-
diar training set and retrain the model from scratch. This process is carried out
separately for each pair, letting images from one pair be included in the training
process for another pair. We further compare our results to [1, 8, 26, 28, 29] that
also generate annotated synthetic cell microscopy data. However, they rely on
labeled target data during generative model training, which presents a disadvan-
tage for CellStyle. To compensate for this in the comparisons to those models,
we use a mixture of our synthetic data and a set of held-out target data with
labels when finetuning the segmentation models.

For the final quantitative evaluations, we use the segmentation accuracy
measure (SEG) and the detection accuracy measure (DET) [19]. SEG measures
how accurately the cell structures are spatially segmented while DET assesses
whether the cells are correctly detected. For false detections, DET introduces a
penalty term that reduces the final score.
Experimental Results: We present our experimental results in a zero-shot
setting for the selected segmentation models in Table 2. The first row for each
model reports the SEG and DET scores for the generalizable pretrained base
models. Next, we provide the scores obtained when the base model is finetuned
on Xsrc and evaluated on Xtgt. Finally, the results when the base model is fine-
tuned using {Xsty, MGT

src } are presented. In general, the base Stardist model
tends to underperform compared to other methods. This limitation is inherent
to its design, as it was specifically developed for segmenting star-convex shapes,
such as cell nuclei. As a result, its performance declines on non-convex cyto-
plasm images, particularly on pairs 1 and 5. As shown in Table 2, CellStyle
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Table 3: Segmentation results for (a) Fluo-GOWT1 and (b) Fluo-HeLa on Cell-
pose [24], Stardist [21], and Mediar [16]. For fairness, the CellStyle outputs are
combined with real target images to finetune the segmentation models, as other
methods use labeled target data when training the generative models. The best-
performing results are highlighted in bold, while the second-best are underlined.

(a) Comparative segmentation results for Fluo-GOWT1

Method
[8] [29] Ours+Real

SEG DET SEG DET SEG DET

Cellpose 0.88 0.91 0.87 0.96 0.91 0.98
Stardist 0.44 0.79 0.84 0.86 0.87 0.98
Mediar 0.79 0.78 0.91 0.97 0.92 0.97

(b) Comparative segmentation results for Fluo-HeLa

Method
[26] [8] [29] [28] [1] Ours+Real

SEG DET SEG DET SEG DET SEG DET SEG DET SEG DET

Cellpose 0.70 0.88 0.75 0.94 0.80 0.93 0.71 0.83 0.76 0.81 0.83 0.96
Stardist 0.70 0.98 0.62 0.87 0.72 0.91 0.75 0.85 0.75 0.95 0.77 0.95
Mediar 0.83 0.97 0.68 0.88 0.84 0.97 0.81 0.98 0.85 0.97 0.88 0.98

significantly improves the zero-shot segmentation quality compared to the base
models in terms of both SEG and DET. It is important to note that the over-
all segmentation performance should be assessed by considering the average of
SEG and DET scores [19]. This is mainly because the GT segmentation labels
are not present for all the cells in the CTC dataset, while cell centers are fully
annotated. Since SEG is computed based on these GT masks, only the regions
containing annotations are evaluated, meaning that false positives in the pre-
dicted masks are not penalized. However, this limitation can be overcome by
considering the arithmetic mean of SEG and DET, referred to as the overall
performance measure (OPCSB) [19]. For example, in Table 2, the base Cellpose
model achieves a higher SEG score for Pair 4, while upon inspecting the predicted
masks, we observed numerous background regions that were falsely segmented
as cells. This cannot be captured directly by SEG, hindering proper comparisons
of the predictions. Alternatively, when OPCSB is considered, the performance of
our approach (with 0.5×(SEG + DET) = 0.86) significantly surpasses the base
model (with 0.5×(SEG + DET) = 0.45) even for this particular pair. Addi-
tionally, in Table 3, we compare our method to other generative models on the
downstream segmentation task in a non-zero-shot setting since they use labeled
data during the training of generative models. The comparisons are conducted
using the datasets that were also generated by these methods, namely Fluo-HeLa
and Fluo-GOWT1. The compared methods were specifically designed for these
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Table 4: The results for the ablation experiments using Cellpose [24], Stardist
[21], and Mediar [16]. For the whole CellStyle pipeline denoted as +Xsty, we
calculated α = 1.5 or r = 1.0 for some pairs (see Table 1). This causes the
results for the configurations +Xsty−α or +Xsty−r to coincide with the setting
from +Xsty for those pairs. These results are replaced by ’-’ to avoid redundancy.

Method
Pair 1 Pair 2 Pair 3 Pair 4 Pair 5 Pair 6

SEG DET SEG DET SEG DET SEG DET SEG DET SEG DET

Cellp+r 0.48 0.72 0.61 0.80 0.65 0.84 0.78 0.0 0.60 0.73 0.52 0.82
Cellp+Xsty − α - - - - 0.80 0.93 0.79 0.90 0.72 0.81 0.54 0.81
Cellp+Xsty − r - - 0.43 0.0 0.59 0.82 0.39 0.63 0.04 0.0 - -
Cellp+Xsty 0.62 0.83 0.81 0.85 0.81 0.95 0.79 0.93 0.76 0.89 0.55 0.83

Strd+r 0.02 0.10 0.03 0.05 0.72 0.90 0.85 0.96 0.03 0.0 0.52 0.80
Strd+Xsty − α - - - - 0.76 0.94 0.85 0.98 0.31 0.46 0.54 0.80
Strd+Xsty − r - - 0.52 0.73 0.18 0.30 0.39 0.67 0.03 0.0 - -
Strd+Xsty 0.28 0.56 0.60 0.77 0.77 0.94 0.87 0.98 0.32 0.47 0.56 0.81

Mdr+r 0.24 0.50 0.79 0.96 0.75 0.95 0.85 0.95 0.63 0.84 0.57 0.87
Mdr+Xsty − α - - - - 0.68 0.96 0.87 0.98 0.68 0.89 0.56 0.88
Mdr+Xsty − r - - 0.77 0.86 0.65 0.92 0.80 0.96 0.60 0.77 - -
Mdr+Xsty 0.31 0.54 0.85 0.97 0.77 0.97 0.87 0.98 0.69 0.90 0.58 0.89

datasets, and adapting them to all the datasets used in this work was not feasi-
ble without major modifications. While our approach demonstrates competitive
performance to those models even for the zero-shot scenario (see Table 2), when
combined with real data, it surpasses them at least by 1% in terms of OPCSB,
the average of SEG and DET (see Table 3).
Ablation Experiments: To assess the significance of individual components
in CellStyle, we conduct ablation experiments. Specifically, we test the effects of
(i) performing only cell size matching and finetuning the segmentation models
on Xsrc, (ii) using a constant attention score scaling ratio of α = 1.5 during
style transfer, (iii) performing style transfer without cell size matching, i.e., with
r = 1.0, and (iv) using the whole CellStyle pipeline (see Table 4). When only
cell size matching is used (+r), the performance tends to drop, which is more
pronounced for the pairs that are significantly different in terms of structure
or color. Similarly, when a fixed attention score scaling ratio α = 1.5 is used
for all the pairs (+Xsty − α), the overall segmentation performance decreases
compared to the adaptive approach, where α is specifically calculated for each
pair of datasets. Intuitively, the value of this parameter varies based on the
similarity of cell characteristics between the paired datasets, with higher values
of α for lower similarity, and vice versa. Additionally, performing style transfer
without cell size matching (+Xsty − r) results in a reduction in segmentation
quality primarily due to structural size differences between Xsrc and Xtgt causing
blurry or indistinct representations in Xsty.
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4 Conclusion

We introduced CellStyle to improve the zero-shot performance of pretrained
cell instance segmentation models. By leveraging style transfer, CellStyle trans-
forms a labeled source dataset to match the visual characteristics of an un-
labeled target dataset while preserving cell morphology. The generated styled
images, combined with the source annotations, enable the finetuning of segmen-
tation models without requiring additional target dataset labels. Our experi-
mental results demonstrate that CellStyle significantly enhances segmentation
performance compared to baseline methods and alternative generative models.
Acknowledgments: This work was partially funded by the German Research
Foundation DFG (STE2802/5-1).
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