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Abstract. Monocular Depth Estimation (MDE) in cell microscopy pro-
vides critical insights into cellular structures, with applications span-
ning cancer diagnostics, hematological analysis, and tumor margin as-
sessment. However, it presents unique challenges such as sparse z-stacks
with limited focal planes, optical aberrations degrading depth precision,
and the inherently ill-posed nature of inferring depth from single 2D im-
ages. Existing MDE methods often rely on semantic priors, geometric
modeling, or self-supervised learning. While effective in macroscopic ap-
plications, these approaches struggle with microscopy-specific challenges
involving domain-specific feature distributions.
To address these limitations, we propose a novel deep learning-based
physics-guided augmentation strategy leveraging Extended Depth of Field
(EDOF) images to enhance MDE performance. To demonstrate the ef-
fectiveness of our approach, we employ a regression model trained to pre-
dict z-stack levels from individual cell images and a UNet-based model
to synthesize blurred cell images at intermediate z-levels by modeling
the point spread function (PSF) of the imaging process. Experiments
on Giemsa-stained peripheral blood smear data demonstrate significant
improvements in MDE over training without augmentation and sim-
ple augmentation strategies. Ablation studies validate the robustness of
our approach, providing a promising framework for advancing medical
microscopy-related applications.
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1 Introduction

Monocular Depth Estimation (MDE) is a fundamental problem in computer
vision that involves predicting depth information from a single 2D image. In
cell microscopy, MDE has applications with respect to medical diagnostics, 3D
cell analysis, and microscopic metrology. Accurate depth estimation is critical
for tasks such as tumor margin assessment [1] during surgery, morphological
analysis for hematological disorders, and therapy monitoring, detecting subtle
changes linked to diseases caused through cell swelling or abnormal granules [2].
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Unlike stereo depth estimation, which requires paired views, MDE in mi-
croscopy offers a simpler and more versatile approach by leveraging the relation-
ship between image blur and depth [3, 4]. However, it poses unique challenges
due to the complex physics of imaging systems and inherent data limitations.
Image formation in microscopy is governed by PSFs, which describe how a point
source of light is imaged through an optical system [5]. Optical aberrations such
as chromatic distortions and diffraction effects degrade depth precision near focal
planes [6,7]. While z-stacks provide depth cues for MDE by capturing variations
in focus across slices, limited focal planes exacerbate the inherently ill-posed
nature of inferring depth from single 2D images [8].

Existing MDE methods often rely on geometric modeling, semantic priors,
or self-supervised learning (SSL) approaches to improve generalization. Geomet-
ric models incorporate physical relationships between focal planes [9] but often
fail to adapt to domain-specific feature distributions in microscopy [10]. Seman-
tic priors leverage scene structure to constrain depth predictions but struggle
with unstructured or textureless regions common in cell microscopy [11]. SSL
approaches learn from unlabeled data by exploiting geometric constraints or
temporal consistency but are limited by scale ambiguity and sparse supervi-
sion signals [12–14]. The lack of large-scale annotated datasets tailored for cell
microscopy further complicates model training and generalization [15].

To address these limitations, we propose a novel physics-guided data aug-
mentation strategy leveraging Extended Depth of Field images (which combine
multiple focal planes into a single in-focus image), to enhance MDE performance
in cell microscopy. Our approach focuses on generating realistic blurred cell im-
ages at intermediate z-stack levels by modeling the PSF of the imaging process,
which bridges gaps in z-stack data and improves training sample diversity while
maintaining physical consistency with the imaging system.

The main contributions of this work include: (i) A physics-guided data aug-
mentation strategy using EDOF images to generate realistic blurred cell images
at intermediate z-stack levels; (ii) A UNet-based model to learn the point spread
function (PSF) of microscopy imaging systems; and (iii) Experiments to demon-
strate how this augmentation strategy improves MDE performance when com-
bined with a regression model trained to predict z-stack levels from individual
cell images. Our approach is validated through experiments on Giemsa-stained
peripheral blood smear data [16], showing significant improvements over training
without augmentation as well as conventional augmentation techniques.

2 Related Works

Monocular Depth Estimation (MDE) has been extensively studied, with deep
learning significantly advancing the field. Traditional methods relied on hand-
crafted features and geometric priors, but the integration of Convolutional Neu-
ral Networks (CNNs) has enhanced performance. Liu et al. [17] combined CNNs
with Conditional Random Fields for depth estimation, while Chang and Wet-
zstein [18] introduced a deep optics approach integrating optical coding with
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end-to-end optimization. Surveys by Rajapaksha et al. [19] and Zhao et al. [20]
provide detailed overviews of advancements in MDE.

Depth estimation in microscopy presents unique challenges due to imaging
physics and artifacts. Traditional focus-based methods lack robustness, while
Shajkofci and Liebling [21] used spatially-variant CNNs for PSF estimation in
optical microscopy, improving resolution and depth localization. Imtiaz et al. [22]
proposed an Attention UNet for light field microscopy, and Imanishi et al. [23] ex-
plored deep learning for depth estimation in light field systems. Ghosh et al. [24]
demonstrated DL based depth estimation in turbid media using epi-illuminated
microscopy images, showcasing its applicability to specialized imaging scenarios.

Physics-guided approaches incorporate domain-specific knowledge into neural
networks. Sun et al. [25] developed a hybrid deep-learning and physics-based
model for computational microscopy, while Li et al. [26] proposed a physics-
informed denoising diffusion model for image reconstruction.

Data augmentation has improved performance in medical imaging tasks as
well. Garcea et al. [27] reviewed augmentation techniques, Welsman et al. [28]
demonstrated its impact on electron microscopy classification, and Hussain et
al. [15] explored differential augmentation tailored to medical imaging.

Building upon these advancements, our work introduces a physics-guided
data augmentation strategy specifically tailored for microscopy, addressing the
limitations of sparse z-stacks and domain-specific imaging artifacts. Unlike prior
approaches that focus on general depth estimation or light field microscopy,
we leverage Extended Depth of Field (EDOF) images to generate physically
consistent blurred cell images at intermediate z-stack levels for improving the
accuracy of monocular depth estimation in cell microscopy.

3 Methodology

Our methodology addresses the challenges of monocular depth estimation (MDE)
in microscopy by employing a physics-guided deep learning approach to bridge
gaps in discrete z-stack data and enhance training diversity, tackling the ill-posed
nature of MDE and improving generalization. It consists of three key steps: (i) a
z-level prediction model, (ii) an auxiliary blurring model, and (iii) an augmented
training strategy.

3.1 z-Level Prediction Model

The first component of our methodology is a z-level prediction model, which we
refer to as z-Net, that estimates the depth level of an input cell image based on
its degree of blur (Figure 1a). Z-Net uses AlexNet architecture, a lightweight and
efficient CNN suitable for small-scale datasets. The model takes 84×84 grayscale
cell/blob images as input, a size chosen to balance computational efficiency and
detail preservation, and outputs a continuous regression value representing the
predicted z-level. Ground truth z-levels range from 1 to 10 in steps of 1, corre-
sponding to discrete focal planes in the z-stack.
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(a) Block Schematic
of z-Net. (b) PSF-Net Architecture. (c) Block Schematic of PSF-Net.

Fig. 1: Pipeline of our methodology.

Z-stack imaging uses blur as a cue for depth estimation, offering robustness
to lighting and texture variations, and computational efficiency. By regressing
z-stack values using z-Net, we aim to approximate MDE in microscopy. The
model is trained with a Mean Squared Error (MSE) loss function to minimize
the difference between predicted and ground truth z-levels.

3.2 Auxiliary Blurring Model

To overcome the limitations of discrete z-stack levels, we develop an auxiliary
blurring model to generate realistic images at intermediate focus levels. Figure 1
shows the training pipeline. Our model uses a U-Net architecture, well-suited for
image-to-image translation tasks due to its ability to preserve spatial information
via skip connections. The model takes as input: (i) The Extended Depth of Field
(EDOF) image, If ∈ RH×W , where H and W are the image height and width
(set to 84 in our case). (ii) A single-channel image, Zg ∈ RH×W , where the
desired focal z-level zl is repeated across the grid.

The U-Net model, fUNet(·), which we refer to as PSF-Net, takes a two-
channel input formed by concatenating the EDOF image, If , and the z-level
grid, Zg, along the channel dimension, and outputs a synthesized blurred image,
Ib, for the specified z-level:

Ib = fUNet([If , Zg]) ∈ RH×W .

PSF-Net implicitly learns the Point Spread Function (PSF), which models
how light spreads through an optical system in 3D space by describing intensity
variations along depth. The PSF is mathematically defined as:

PSF (x, y, z) = |F{ApertureFunction(x, y, z)}|2,

where F denotes the Fourier Transform, and (x, y, z) represent spatial coordi-
nates in 3D space. Aperture function, which is dependent on factors like numer-
ical aperture (NA), wavelength (λ), and refractive index mismatches, describes
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how diffraction and interference patterns determine the intensity distribution of
light at different depths [5].

To generate intermediate z-level images, the object intensity distribution (ap-
proximated by the EDOF image) is convolved with a depth-specific PSF:

Ib(x, y, z
′) = If (x, y)⊗ PSF (x, y, z′),

where ⊗ denotes the convolution operation. Here, z′ represents an intermediate
depth level corresponding to the focal plane’s z-level. While this convolution is
theoretically computed in the Fourier domain using:

F{Ib(x, y, z′)} = F{If (x, y)} ·OTF (x, y, z′),

where OTF (x, y, z′) is the Optical Transfer Function derived from the PSF. We
do not explicitly compute OTF in practice. Instead, the proposed PSF-Net learns
this mapping implicitly during training.

PSF-Net is trained by minimizing a pixel-wise Mean Squared Error (MSE)
loss between the generated blurred image, Ib, and its ground truth counterpart,
IGT :

L =
1

HW

H∑
x=1

W∑
y=1

(Ib(x, y)− IGT (x, y))
2.

3.3 Augmented Training Strategy

Using PSF-Net, we generate an augmented dataset by synthesizing cell images
at intermediate z-levels (e.g., 1.5, 2.5, etc). These augmented images signifi-
cantly increase training diversity and reduce gaps between discrete focal planes,
enabling better generalization across unseen z-levels during testing.

The augmented images are combined with the original data and incorporated
into the training pipeline of the z-Net. This augmentation strategy enhances
MDE performance by providing more granular depth information during training
while maintaining physical consistency with microscopy imaging systems.

4 Experiments and Results

4.1 Setup

Dataset Description The dataset used in this work consists of Giemsa-stained
Peripheral Blood Smears (PBS) prepared for malaria parasite detection [16]. The
Giemsa-stained cells retain their natural thickness, making them pseudo-3D ob-
jects when smeared onto a flat glass substrate. At each site, the 3D cells lie above
the substrate and share a similar depth range. These characteristics, combined
with z-stack images that provide depth estimation cues through varying degrees
of blur, make this dataset well-suited for this task.

Each z-stack simulates different focus levels (blur) and includes 10 focal
planes per site, along with an Extended Depth of Field (EDOF) image synthe-
sized from the stack. High-resolution images (2560× 2160 pixels) were acquired
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(a) Site and
cell EDOF
images.

(b) PSF-Net Generated
vs Ground Truth Images.

(c) Examples of aug-
mented cell images
generated by PSF-
Net. (d) z-Net.

Fig. 2: Example cell images and the architecture of z-Net.

using a brightfield microscope with a focal offset of 0.5 µm between consecu-
tive z-levels. The dataset includes approximately 10 sites, with each site yielding
150–200 extractable cells, resulting in thousands of individual cell samples.

Data Preparation and Organization The dataset is prepared for cell-level
analysis using bounding box annotations provided in a JSON file. The pre-
processing pipeline involves the following:

– Cells are extracted based on bounding box coordinates, resized to 84 × 84
grayscale images, and saved in both PNG and TIFF formats

– They are organized as 10 z-stack images per cell to represent varying degrees
of blur, along with an EDOF image for a focused view, as shown in Fig 2a

– Approximately 1500 images per site (10 z-stack images × 150 cells) are
extracted across all sites, with 20% of the dataset reserved for testing to
ensure unbiased model evaluation.

4.2 Augmented Training

All training was conducted using the PyTorch framework on an NVIDIA Tesla
V100 32 GB GPU. The first step involved training PSF-Net on 1690 cell im-
ages from Site 1, split into a 3:1:1 train-validation-test ratio. The model was
trained for 300 epochs using the Adam optimizer with a learning rate of 0.001
until the loss curve saturated, achieving an R2 score of 0.991 and a pixel wise
mean squared error of 0.0001 on the test set. A qualitative comparison between
PSF-Net generated images and the corresponding ground truth is made in Fig-
ure 2b. Additionally, simulations are included in the supplementary material,
demonstrating PSF-Net’s utility in generating depth cues for MDE through blur
progression across focal planes.
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Table 1: Performance metrics for different augmentation strategies on test data.

Site Metric No
Augmentation

Traditional
Augmentation

Linear
Interpolation

Bicubic
Spline

Interpolation

Proposed
Augmentation

1 MSE 0.769 0.981 0.443 0.359 0.126
Sigma 0.871 0.986 0.655 0.592 0.354

2 MSE 0.777 1.031 0.343 0.447 0.181
Sigma 0.879 0.951 0.586 0.668 0.423

3 MSE 0.601 3.135 0.372 0.337 0.123
Sigma 0.772 1.765 0.598 0.578 0.351

Augmented cells were generated at intermediate z-levels (e.g., 1.5, 2.5, etc.)
using PSF-Net, resulting in an additional 1521 training samples. Figure 2c illus-
trates examples of augmented cell images at intermediate z-levels generated by
PSF-Net. These augmented images were incorporated into the training pipeline
of z-Net (Fig. 2d), which was trained for 1000 epochs with a batch size of 33 using
the same optimizer and learning rate as PSF-Net. The model’s performance with
and without augmentation was evaluated, showing significant improvements in
test MSE. Table 1 shows the result for different sites, demonstrating the robust-
ness and consistency of our augmentation strategy.

4.3 Comparisons with Other Augmentation Strategies

The efficacy of the proposed augmentation strategy was compared with two
other approaches under similar training conditions. The first approach, tradi-
tional augmentation, involved applying standard techniques such as flips, rota-
tions, and color jitter using torchvision.transforms.Compose. However, this
resulted in performance degradation as these operations introduced irrelevant
variations and failed to capture the depth-specific blur characteristics critical
for microscopy-based depth estimation. The second approach involved generat-
ing intermediate z-level images through interpolation techniques, including linear
and bicubic spline interpolation. While this approach gave improvements over
no augmentation, it did not match the performance of the proposed physics-
guided strategy. The test MSE and Sigma error were used as evaluation metrics
to compare the training strategies. Table 1 summarizes the results.

4.4 Ablation Studies

Study 1: Effect of Augmentation Step Size To evaluate the impact of aug-
mentation step size on model performance, we varied the step size used to gener-
ate intermediate z-level images. The original dataset contained z-levels ranging
from 1 to 10 in steps of 1 (base with no augmented images). Augmented datasets
were created with step sizes of 0.25, 0.33, 0.5 (used for augmented training pre-
viously), 2, and 3 (for a step size of 3, less blurry z-levels 1.5, 4.5, and 7.5 were
chosen). Table 2 summarizes the performance metrics for different step sizes.
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Table 2: Effect of augmentation step
size on test performance (Site 1).

Step
Size

Test
MSE

Test
Sigma

base 0.769 0.871
0.25 0.198 0.441
0.33 0.217 0.466
0.5 0.126 0.354
2 0.135 0.367
3 0.201 0.448

Table 3: Test MSE for different archi-
tectures and SOTA methods (Site 1).

Model Without
Augmentation

With
Augmentation

AlexNet 0.769 0.126
ResNet 0.305 0.051
DenseNet 0.297 0.119
MobileNet 0.531 0.176
EfficientNet 0.659 0.320
Inception 0.560 0.226
ViT 1.263 0.507
MiDaS 0.371 0.114

Results showed that a step size of 0.5 achieved the best performance by
balancing data diversity and model sensitivity. Smaller step sizes (e.g., 0.25,
0.33) provided diminishing returns due to the limited sensitivity of PSF-Net,
while larger step sizes (e.g., 2 or 3) failed to generate sufficient training diversity.

Study 2: Robustness Across Model Architectures To assess the robust-
ness of our proposed augmentation strategy across different architectures for
z-Net, we replaced AlexNet with well known architectures such as ResNet,
DenseNet, MobileNet, EfficientNet, and Inception networks. Additionally, partial
state-of-the-art (SOTA) comparisons using Vision Transformer and MiDaS small
MDE frameworks are included, though the higher computational cost of these
SOTA models may limit their clinical utility compared to lightweight networks.
Each architecture was trained with and without augmentation under identical
conditions. Table 3 summarizes the results.

The results consistently showed that the proposed augmentation strategy
improved performance across all architectures, as evidenced by lower MSE values
in augmented training compared to non-augmented training. This highlights the
robustness of our approach and its versatility in enhancing depth estimation
performance regardless of the network design.

5 Conclusion

This work introduces a physics-guided augmentation strategy to improve monoc-
ular depth estimation (MDE) in microscopy. By generating realistic intermedi-
ate z-level images using Extended Depth of Field (EDOF) inputs, our approach
bridges the gaps in discrete z-stack data, significantly reducing test mean squared
error (MSE) and enhancing model robustness. The proposed framework is inde-
pendent of the underlying deep network architecture, making it broadly appli-
cable to various MDE methods in microscopy.

While our method was validated on Giemsa-stained peripheral blood smear
data, the underlying physics-guided augmentation is not tied to a specific cell
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type or imaging modality. Preliminary experiments on semiconductor scanning
electron microscopy (SEM) images also indicated adaptability. From a practical
perspective, the main computational cost lies in training PSF-Net; once trained,
image generation and z-Net inference are efficient and suitable for real-time
clinical workflows, balancing physical realism with computational efficiency.

Beyond depth estimation, the augmented images generated by this method
offer potential for downstream tasks such as segmentation, classification, and
cell tracking. The physics-guided design ensures realistic spatial representations,
which could also benefit applications in industrial metrology and medical imaging
workflows like super-resolution and deblurring.

Future work will focus on eliminating the reliance on precomputed EDOF
images by leveraging shape-from-focus (SFF) models [29] or neural networks
to generate all-focus images directly from z-stacks. Comprehensive validation
on additional medical datasets, stains, and microscopy systems remains impor-
tant to fully establish generalizability. Additionally, extending this approach to
other domains beyond cell microscopy presents an exciting direction for further
research and application.
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