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Abstract. Emotion recognition leveraging multimodal data plays a piv-
otal role in human-computer interaction and clinical applications, such as
depression, mania, Parkinson’s Disease, etc. However, existing emotion
recognition methods are susceptible to heterogeneous feature representa-
tions across modalities. Additionally, complex emotions involve multiple
dimensions, which presents challenges for achieving highly trustworthy
decisions. To address these challenges, in this paper, we propose a novel
multi-expert collaboration and knowledge enhancement network for mul-
timodal emotion recognition. First, we devise a cross-modal fusion mod-
ule to dynamically aggregate complementary features from EEG and
facial expressions through attention-guided. Second, our approach incor-
porates a feature prototype alignment module to enhance the consistency
of multimodal feature representations. Then, we design a prior knowledge
enhancement module that injects original dynamic brain networks into
feature learning to enhance the feature representation. Finally, we intro-
duce a multi-expert collaborative decision module designed to refine pre-
dictions, enhancing the robustness of classification results. Experimental
results on the DEAP dataset demonstrate that our proposed method
surpasses several state-of-the-art emotion recognition techniques.

Keywords: Emotion recognition · EEG · Multimodal fusion · Knowl-
edge enhancement · Multi-expert collaboration.

1 Introduction

Affective computing shows significant potential in healthcare applications, es-
pecially for assisting in diagnosing emotional disorders and psychiatric condi-
tions [13,5]. For example, quantitative emotional assessment can help in the
early diagnosis of Parkinson’s Disease [12]. However, mental health disorders
often exhibit dynamic emotional changes in complex environments, which can
be reflected through variations in facial expressions or EEG signals. Therefore,
how to develop a multimodal data emotion recognition system to improve the
accuracy of disease diagnosis is the key.
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As affective states and distinct neurophysiological patterns are established
associations, particularly in frequency bands (alpha, beta, theta) and spatial
characteristics like frontal asymmetry [16,19]. Emotion recognition based on
EEG signals has gained wide attention in recent years [21,9]. For example,
Wu et al. [21] proposed a graph orthogonal purification network designed to
capture both emotion-relevant and emotion-irrelevant features, which address
distribution discrepancies across different emotion feature spaces. Li et al. [9]
proposed a cross-attention-based dilated causal convolutional neural network to
extract more discriminative features related to emotions. This method intro-
duces the domain discriminator to reduce individual variability. However, these
methods rely solely on single-modality data, which may not provide sufficient
discriminative features for complex affective computing tasks. Multimodal emo-
tion analysis can integrate complementary multi-dimensional information (i.e.,
EEG and facial expressions) to enhance model adaptability in complex scenar-
ios. Therefore, multimodal-based emotion recognition methods are proposed to
improve emotion recognition performance [15,25]. For instance, Sun et al. [15]
proposed a mutual information-based disentangled multimodal representation
learning framework to balance and integrate the contributions of these diverse
types of information. Meanwhile, Yin et al. [25] proposed a multimodal and
channel attention fusion transformer to model inter-channel correlations and
enhance emotion recognition accuracy by emphasizing global temporal depen-
dencies. However, existing multimodal emotion recognition methods often yield
suboptimal classification performance due to the lack of prior knowledge inte-
gration [27].

Brain networks based on EEG can reveal the topological associations of ac-
tivation between different brain regions, which not only enhance feature dis-
criminability for emotion recognition but also provide spatiotemporal prior in-
formation for understanding emotional fluctuations [22]. For example, Zheng et
al. [27] proposed a prior-driven dynamic functional connectivity network to ex-
tract complex spatial-temporal features to aid emotion recognition. In addition,
Chen et al. [3] proposed a comprehensive multi-source learning network to in-
corporate the information from multi-source data. However, existing methods
still ignore both the time-frequency characteristics of raw EEG signals and the
detailed features of facial expressions. In addition, the static weighting mecha-
nisms in multimodal fusion algorithms may lead to misclassification in complex
emotion recognition scenarios due to their limited adaptability.

To solve the above challenges, we propose a novel multi-expert collabora-
tion and knowledge enhancement network for multimodal emotion recognition.
Specifically, we propose a cross-modal fusion module (CMF) to dynamically
aggregate complementary features from EEG and facial expressions through
attention-guided interaction. Furthermore, we calculate the feature prototype
alignment (FPA) loss to align the multimodal feature. Then, we design a prior
knowledge enhancement module (PKE) that injects original dynamic brain net-
works into feature learning to enhance the feature representation. Finally, we
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propose a multi-expert collaborative decision module (MCD) to obtain robust-
ness classification results.

2 Method

As shown in Fig.1, the proposed framework architecture consists of four intercon-
nected core components that collectively address the challenges of multimodal
emotion recognition. The cross-modal fusion module establishes deep feature
interactions between EEG signals and facial expressions. The prior knowledge
enhancement module incorporates domain-specific knowledge to enrich feature
representations. The multi-expert collaborative decision module integrates com-
plementary expertise, while the feature prototype alignment loss minimizes dis-
tribution discrepancies between multimodal feature representations, preserving
their distinctive characteristics.

Multi-expert Collaborative Decision
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Fig. 1. Illustrate our proposed multimodal emotion recognition method.

Cross-modal Fusion Module. To effectively integrate multimodal features,
we propose the cross-modal fusion module. Specifically, the EEG signals XEEG ∈
RT×CE×D and facial expression images XFacial ∈ RT×CF×D are fed into the
EEG encoder and facial encoder to obtain the EEG embedding embEEG and
facial expression embedding embfacial, respectively, where CE and CF denote
the number of channels, T indicates the number of time windows, and D rep-
resents the feature dimension. It is worth noting that the EEG encoder and
facial encoder use the EEGViT [24] and ViT [4] to extract the EEG feature
and facial feature, respectively. Then, these modality-specific embeddings are
then fused through our cross-modal fusion module, which comprises two self-
attention blocks for intra-modal refinement and two cross-attention blocks for
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inter-modal interaction, ultimately yielding a unified multimodal feature repre-
sentation embMF . Therefore, the cross-modal fusion module is defined as,

QEEG,KEEG, VEEG = ATTself (embEEG)

QFacial,KFacial, VFacial = ATTself (embfacial)

embMF = ATTcross(QFacial,KEEG, VEEG)

⊕ATTcross(QEEG,KFacial, VFacial)

(1)

where ATTself and ATTcross represent the self-attention block and the cross-
attention block, respectively. ⊕ denotes the concatenate operation.

Prior Knowledge Enhancement Module. In EEG recordings, each elec-
trode not only captures electrophysiological activity within its corresponding
brain region, but also contributes to emotional state recognition [18,23]. There-
fore, we propose to construct a dynamic brain network to establish prior knowl-
edge for improving feature discriminability. In our paper, EEG electrode channels
are simplified as nodes in constructing an EEG network to characterize informa-
tion in brain regions, and signal linkages between them form edges connecting
these nodes. The connection strength is quantified as edge weights in the net-
work. Specifically, we obtain each subject’s EEG data XEEG ∈ RT×CE×D. To
establish the functional connectivity network, we compute the Pearson corre-
lation coefficient between EEG from a pair of channels within the t-th time
window,

PCCij(t) =
Cov(xi(t), xj(t))

σi(t)σj(t)
(2)

where Cov denotes the covariance between two vectors, σ represents the standard
deviation operation, xi(t) and xj(t) denotes the EEG of a pair of channels i and
j within the t-th time window, respectively. Thus, for each subject, the dynamic
brain network DFCNori ∈ RT×C×C consists of T transient functional connec-
tivity network [C(1), C(2), · · · , C(t)]T , where each matrix captures time-varying
functional interactions between brain regions. Finally, we use the dynamic brain
network as prior knowledge to guide the fusion process of multimodal features
and help the model better capture key emotion-relevant features. The fusion
process is defined as,

Fprior = embMF ⊗DFCNori (3)

where ⊗ represents the element-wise multiplication operation.

Multi-expert Collaborative Decision Module. To reduce decision error
in complex emotion recognition tasks, we proposed a multi-expert collabora-
tive decision module to integrate cross-domain expert knowledge to improve the
decision-making accuracy of the model. Specifically, the multi-expert collabo-
rative decision module consists of three same-expert decision blocks (i.e., EEG
decision expert, hybrid modal decision expert, and facial decision expert) and
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a gating network. Furthermore, the different embedding feature is fed into the
different expert decision blocks to obtain classification results. Therefore, each
expert decision block is defined as,

expertm = Wo,m ·GELU(Wh,m · embm + bh,m) + bo,m (4)

where m ∈ M = [EEG, facial,MF ] represent different modal sets. Wo,m, bo,m,
Wh,m, bh,m are the learnable weights and biases of the m-th expert network. The
concatenated embedding features are subsequently fed into a gating network to
dynamically determine weighting coefficients for each expert’s output. This gat-
ing network employs an average pooling layer followed by the SoftMax function,
enabling adaptive weight allocation according to diverse feature representations.
Thus, the gating weights are defined as,

weightm = Softmax(Avgpool(Wm · embm + bm)) (5)

The outputs of all experts are computed and stacked together to form a ten-
sor expertEEG(embEEG), expertfacial(embfacial), expertMF (embMF ). It follows
that the output of the multi-expert collaborative decision module is the weighted
sum of all expert outputs,

outputs =
∑
m∈M

weightm · expertm(embm) (6)

where Wm is the m-th element of the weights vector. expertm(embm) repre-
sents the m-th expert’s output. Finally, we obtain the final emotion recognition
classification result.

Feature Prototype Alignment. Different modalities (i.e., EEG signals and
facial expressions) exhibit inherent structural and representational disparities
that challenge their effective alignment within a shared embedding space. To
address this issue, we propose a feature prototype alignment mechanism to
leverage the complementary features of multimodal emotions, which can pre-
serve their distinctive characteristics. We employed K-means clustering to cap-
ture global patterns in emotion distribution, initializing prototypes as modality-
specific emotion category centroids during the feature embedding process. Thus,
the prototype vector of the modal u ∈ [EEG, faical] is defined as,

Pu =
1

Nu

Nu∑
i=1

embu (7)

where Nu is the number of samples for modal u, and embu is the feature rep-
resentation of the modal u. Minimizing the distance between projected features
and their respective modal prototypes ensures cross-modal alignment.

LP =
1

N

N∑
i=1

(∥∥embiEEG − PEEG

∥∥2
2
+
∥∥embifacial − Pfacial

∥∥2
2

)
(8)

where || · || represents the L2_norm.
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3 Experiment Results

Multimodal Emotion Databases. The DEAP dataset is a multimodal dataset
designed for the analysis of human emotional states [7]. The dataset comprises
a 32-channel electroencephalogram (EEG) and peripheral physiological signals
collected from 32 participants, with supplementary facial expression recordings
obtained from the first 22 subjects. During the experiment, each participant
viewed 40 standardized one-minute video stimuli, followed by comprehensive
affective evaluations using a validated assessment scale. Post-stimulus ratings
encompassed five discrete dimensions: arousal, valence, dominance, liking, and
familiarity.

Data Processing. A comprehensive data preprocessing pipeline was imple-
mented for the DEAP dataset, wherein the 32-channel EEG signals were down-
sampled to 128Hz. Power spectral density (PSD) features were subsequently
extracted using the Welch method with a 3-second non-overlapping window seg-
mentation. Following established methodologies in the field [26], we formulated
the emotion recognition task as a binary classification problem by implementing
a threshold of 5 to dichotomize the continuous rating scales. For facial expression
analysis, we employed OpenFace [1] to extract facial features from video frames,
ensuring temporal synchronization with corresponding physiological data.

Experiment settings. In our experiment, we employed the leave-one-subject-
out (LOSO) cross-validation strategy, which is particularly suitable for subject-
independent emotion recognition tasks. In each validation iteration, the sam-
ples from a single subject were held out as the testing set, while the remaining
subjects’ samples from the dataset constituted the training set. The final perfor-
mance metrics were computed as the average values across all iterations, thereby
providing a comprehensive assessment of the model’s generalization capability
across different individuals. The identification performance was evaluated using
accuracy (ACC) and F1-score. The proposed model was implemented in PyTorch
and trained on an NVIDIA GeForce RTX3090 GPU. The Adam optimizer was
used to optimize our method, and the learning rate and batch size were set
as 0.001 and 40, respectively. We employed the cross-entropy loss to supervise
the multimodal learning process. The source code of this work is available at
https://github.com/EEGBrainNet/Emotion-Recognition.

Results and Discussions. To evaluate the effectiveness of our proposed method,
we compared our method with EEG-based methods (i.e., DGCNN [14] and EEG-
Net [8]), facial-based methods (i.e., ViT [4] and GAT [17]), and multimodal-
based methods (i.e., MKL [2], LSTM [6], DCCA [10], MoGE [11], DFCNs [27],
and Milmer [20]) in DEAP dataset. The experimental results are reported in
Table 1. As shown in Table 1, our proposed method achieves the best emotion
recognition performance. For example, on valence and arousal, the average ACC
and F1 of our method achieved 70.01%, 74.82%, 71.67%, and 76.15%, respec-
tively. The main reason for the superiority of our method is that our method
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Table 1. Experimental results of our method with comparison methods (Mean±Std%).

Modality Method Valence Arousal
ACC F1 ACC F1

EEG DGCNN [14] 62.54/09.32 61.54/11.25 62.56/09.64 68.09/11.67
EEGNet [8] 61.11/06.19 60.41/20.47 61.52/09.59 66.07/12.37

Facial ViT [4] 62.51/10.17 65.11/10.66 62.52/08.23 69.39/13.94
GAT [17] 61.53/06.98 63.92/18.62 66.38/09.47 74.69/13.82

EEG+Facial

MKL [2] 56.94/08.38 64.31/13.90 55.14/09.25 65.39/10.03
LSTM [6] 64.86/09.52 62.95/14.95 64.30/11.78 76.28/09.96
DCCA [10] 57.08/08.79 68.42/08.04 53.75/08.59 65.04/10.26
MoGE [11] 65.01/08.93 66.67/10.74 65.08/09.35 69.57/16.24
DFCNs [27] 67.36/05.58 69.17/09.01 68.47/08.65 74.68/13.36
Milmer [20] 67.77/09.49 68.06/15.43 67.78/08.49 75.02/11.52

Ours 70.01/09.42 74.82/16.59 71.67/07.50 76.15/13.35

Table 2. Ablation studies of our proposed method (Mean±Std%).

Method Valence Arousal
ACC F1 ACC F1

Baseline 61.66/09.50 64.89/16.29 63.19/09.68 65.58/13.25
w/o CMF 66.51/08.25 67.28/12.45 67.44/08.44 67.51/12.13
w/o PKE 68.19/09.08 68.89/15.51 69.16/09.75 70.17/10.86
w/o MCD 67.50/08.45 69.76/12.94 68.33/08.53 68.29/14.50
w/o FPA 69.02/09.34 70.50/16.25 70.27/08.89 74.74/11.66

Ours 70.01/09.42 74.82/16.59 71.67/07.50 76.15/13.35

not only uses the dynamic brain network as prior knowledge to enhance the fea-
ture representation, but also introduces multi-expert collaborative decision to
improve the classification performance of emotion recognition.
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To evaluate the effectiveness of our proposed module, we conduct several ab-
lation studies on the DEAP dataset. Besides, we establish a baseline that simply
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fuses two modal features through concatenate operations. The experiment results
are reported in Table 2. As shown in Table 2, our proposed module achieved ef-
fective improvement with the baseline method, with an increase of 8.35%, 9.93%,
8.48%, and 10.57% for ACC and F1 on valence and arousal, respectively. Specif-
ically, we proposed the cross-modal fusion module and the prior knowledge en-
hancement module to obtain better improvement with the baseline. The possi-
ble reason may be that the two modules not only can enhance emotion-relevant
feature representation, but also help the model focus on key emotion-relevant
brain regions, reducing redundant feature learning. Furthermore, the removal of
the MCD module leads to performance degradation compared to our method,
resulting in accuracy reductions of 2.51% and 3.34% for valence and arousal clas-
sification, respectively. The reason lies in that MCD effectively reduces decision
bias and further improves classification performance. Moreover, when the FPA
module is removed from our proposed method, performance degradation occurs.
Experimental results demonstrate that the FPA module can effectively reduce
inter-modal heterogeneity and enhance cross-modal semantic consistency.

To analyze the performance differences among emotion recognition methods,
we applied t-distributed Stochastic Neighbor Embedding (t-SNE) to visualize
high-dimensional feature distributions. As shown in Fig. 2, our method demon-
strates clearer cluster separation in the embedded space, indicating enhanced
discriminative power for affective states. Experimental results confirm the frame-
work’s superiority in multimodal emotion recognition, particularly in valence-
arousal classification accuracy. In addition, we also display the spatiotemporal
characteristics of brain activity patterns through topographic mapping in Fig. 3.
It is worth noting that the color intensity of brain regions reflects EEG-facial
expression correlation levels, with red hues indicating higher correlations and
blue hues denoting lower ones. These findings validate that our method effec-
tively identifies emotion-relevant electrodes and establishes corresponding brain
networks as prior structural information, thereby enhancing model performance
in emotion recognition tasks.

4 Conclusion

In this paper, we propose a novel multi-expert collaboration and knowledge en-
hancement network for multimodal emotion recognition. Specifically, we develop
a cross-modal fusion module to integrate EEG and facial expression features.
Second, feature prototype alignment is employed to enhance cross-modal con-
sistency. Then, we also proposed a prior knowledge enhancement module that
incorporates dynamic brain network topology as prior knowledge to strengthen
feature representation. To reduce the uncertainty in decision fusion across differ-
ent modalities, we develop a multi-expert collaborative strategy that systemati-
cally integrates complementary insights from experts across various modalities,
thereby enhancing the robustness of the decision fusion results. Experimental
evaluations demonstrate that our framework achieves better classification per-
formance compared with state-of-the-art emotion recognition methods.
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