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Abstract. Deep neural networks excel in medical imaging but remain
prone to biases, leading to fairness gaps across demographic groups. We
provide the first systematic exploration of Human-AI alignment and fair-
ness in this domain. Our results show that incorporating human insights
consistently reduces fairness gaps and enhances out-of-domain general-
ization, though excessive alignment can introduce performance trade-
offs, emphasizing the need for calibrated strategies. These findings high-
light Human-AI alignment as a promising approach for developing fair,
robust, and generalizable medical AI systems, striking a balance be-
tween expert guidance and automated efficiency. The code is available
at https://github.com/Roypic/Aligner.
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1 Introduction

Deep neural networks have become indispensable for a wide range of medical im-
age computing applications. Nevertheless, their data-driven nature renders them
susceptible to learning spurious correlations and biases [8,3,9,27,34]. This sus-
ceptibility not only undermines robustness and generalization, especially under
out-of-distribution (OOD) conditions, but also raises concerns about the fair-
ness of these systems across diverse patient populations. Human-AI alignment
has recently emerged as a promising avenue for mitigating such issues by di-
recting the learned representations toward human-centric knowledge. Although
existing work on Human-AI alignment - also referred to as Explanation-Guided
Learning (EGL) [5,6,7,23,31,23,28,19,20] - has shown improved robustness and
performance, its relationship with model fairness remains largely unexplored. In
medical imaging, unfairness often manifests as systematic performance dispari-
ties across demographic subgroups (e.g., sex, race, age), stemming from biases in
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training data and inconsistencies in annotation practices, among other factors.
For instance, several studies have revealed fairness gaps in chest X-ray classifiers
[25,26], racial disparities in brain image analysis [29,14], and gender imbalances
yielding skewed diagnostic outcomes [16]. Other lines of research highlight un-
fairness resulting from socioeconomic biases [22] or presentation and annota-
tion disparities [10,32]. Given the potential of Human-AI alignment to mitigate
these issues, its impact on reducing fairness gaps warrants deeper investiga-
tion. In this paper, we investigate the interplay between Human-AI alignment
and model fairness, a relationship that remains largely unexplored. Specifically,
we ask: “Does Human-AI alignment contribute to reducing disparities in trained
models?”. To this end, we design a study on disease classification from chest
X-ray images, a commonly benchmarked task for fairness research for which as-
sociated fairness variables are available. We systematically analyze fairness with
respect to two subgroups (gender and age), using multiple group fairness met-
rics. Our experiments are conducted on Vision Transformer (ViT) under various
degrees of human-AI alignment (including deliberate misalignment). Our find-
ings demonstrate that Human-AI alignment consistently reduces fairness gaps
across diseases and demographic subgroups while also enhancing out-of-domain
generalization. This supports recent studies [29,14,32] suggesting that mitigating
spurious correlations can improve real-world performance, challenging the notion
that fairness interventions necessarily degrade model accuracy. However, we also
find that excessive or misguided alignment can introduce trade-offs, emphasizing
the need for carefully calibrated strategies. To the best of our knowledge, this is
the first systematic study of Human-AI alignment’s impact on fairness in medi-
cal imaging, highlighting its potential to develop fair, robust, and generalizable
AI models.

2 Methods

2.1 Experimental Design to Assess Impact of Human-AI and
Fairness

Figure 1 summarizes our study design, describing the multi-center training and
out-of-domain (OOD) data used in our experiments, comprising fairness at-
tributes (sex and age), different levels of human-AI alignment (including a ran-
domized alignment ablation), and evaluation metrics for fairness, and perfor-
mance (including a subanalysis at different regimes of training data).

Training and OOD Data: We selected multiple publicly available chest X-
ray datasets to train classification models for detecting (i) nodules and masses,
(ii) pleural effusion, and (iii) edema. These conditions were chosen for their clini-
cal relevance and their distinct semantic characteristics, e.g., spatial location is a
key factor for nodules, whereas texture plays a crucial role in identifying pleural
effusion. These training datasets come equipped with expert-based annotations
reflecting human-based attention areas a radiologist uses for diagnosis. These
areas were used to guide the learning process, as detailed in section 2.2. Table 1



Title Suppressed Due to Excessive Length 3

Training set Testing set

Year: 2019 Year: 2000

Total: 134,300 Total: 247 Alignment

100%

Impact of 
Mis-alignment

Low data
regime
performance

75%50%25%0%

Different 
percent
of Alignment

Random
generated

Epoch 1 Epoch 2

Epoch 3 Epoch 4

Experimental Setup

…25% 100%

F.G

Fairness gap 
across 
metrics

F.G

Name: JSRT NoduleName: CheXpert

Fig. 1: Experimental setup to assess the impact of Human-AI alignment on
fairness. Models trained on multicenter training datasets are trained without
Human-AI alignment (i.e., baseline), and with various degrees of Human-AI
alignment, and their fairness gap and classification performance metrics are as-
sessed across two demographic groups on out-of-domain datasets across three
different classification tasks. Additionally, the impact of Human-AI attention on
low-data regimes and when alignment is randomized are further evaluated.

provides details on the datasets used for training and OOD evaluation, includ-
ing NIH ChestX-Ray14 [30], MIMIC-CXR [13], VinDr-CXR [21], PadChest [2],
CheXpert [12], and CheXlocalize [24]. These datasets ensure a diverse and com-
prehensive representation of different pathologies, with a total of 627, 362 cases
used for training and 134, 547 for OOD testing.

Varying degrees of Human-AI alignment: We investigated the impact
of Human-AI alignment on fairness by systematically varying the degree of Hu-
man guidance. Specifically, we considered five levels: Level-1 : 0% (No Align-
ment): A fully data-driven approach where no Human-AI alignment is con-
ducted. Level-2 : 25% (Weak Alignment): Human-labeled data constitutes
25% of the total dataset used for standard training. Level-3 : 50% (Moderate
Alignment): Human guidance is incorporated at a level equal to 50% of the
dataset used for standard training. Level-4 : 75% (Strong Alignment): A pre-
dominantly Human-aligned setting where 75% of the dataset used for standard
training consists of Human-labeled data. Level-5 : 100% (Full Alignment):
A model trained on the same total dataset size as the standard cross-entropy
baseline, but with complete Human guidance.

Varying training dataset size regimes: We also performed a compara-
tive analysis of fairness between fully Human-AI aligned models and non-aligned
models across different training data ratios (i.e., 25%, 50%, 75% and 100%),
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Table 1: Datasets used for training and out-of-distribution (OOD) testing. The
CheXlocalize dataset is utilized as an additional attention evaluation set of the
CheXpert dataset.
Condition Training OOD Testing

NIH PadChest VinDr MIMIC JSRT CheXpert
ChestX-ray14 CXR CXR (CheXlocalize)

Nodule & Mass ✓ ✓ ✓ – ✓ –
Pleural Effusion ✓ – ✓ ✓ – ✓
Edema ✓ – ✓ ✓ – ✓

where we measured group performance disparities across four key metrics: Ac-
curacy, AUC, F1-score, and True Positive Rate (Sensitivity).

Ablation study - Effect of Random Alignment: We also performed an
experiment where we randomized the attention areas the models are promoted to
be aligned to. For each epoch, we randomly generate different shapes of attention
maps at random locations.

Evaluation metrics: On the OOD datasets, we assessed fairness using the
fairness gap metric proposed in [15], which quantifies the disparity in AUC per-
formance between the best- and worst-performing demographic subgroups (e.g.,
male vs. female, and across different age subgroups(binary encoded based on
the threshold); see Fig. 1 for details on subgroup definitions). Following [15], we
considered AUC performance disparity as most relevant given that the positive
and negative ratio of samples across all conditions is imbalanced. In addition,
we evaluated the performance of models using the F1 score, accuracy, area un-
der the ROC curve (AUC), and sensitivity across classes. Finally, to assess the
degree of Human-AI alignment, we assessed the level of hit rate, as proposed in
the XAI literature [24].

2.2 Human-AI Alignment for ViTs

Fig. 2 illustrates the architecture employed to perform Human-AI Alignment.
It builds upon a recently proposed pre-trained medical Vision-Language Model
(VLM) for chest X-ray diagnosis [18]. Below, we provide a summary of the
approach for completeness reasons and derive the reader to [18] for details.

Overall Pipeline. Given an input image I and a textual prompt T (e.g.,
“Edema”), we first extract visual features v = Φimage(I) and language embed-
dings t = Φtext(T). These features are subsequently fused by a cross-attention
module [17] to integrate visual features from chest X-rays with textual em-
beddings of clinical findings, producing cross-attention maps {Mc}, where each
Mc ∈ Rh×w corresponds to a particular class label c.

Attention Alignment. To address the discrepancy between clinicians’ at-
tention and the model’s attention, the Attention Aligner module refines each
cross-attention map. We excluded attention loss computation for negative sam-
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ples because it has been shown that transformers can still focus on specific image
regions[1] even when no relevant features are present. Consequently, the refined
maps are supervised using two loss terms that are computed only on positive
samples—that is, only on the pixels where the ground-truth annotation is non-
zero. Let Ω+ = {i ∈ Ω | Yi ̸= 0} denote the set of positive pixels.

First, for attention alignment and following [18], we use a modified dice loss
with false positive suppression defined as

LAL = 1−
2
∑

i∈Ω+ YiPi + α+ ε∑
i∈Ω+(Yi + Pi) + (wFP − 1)

∑
i∈Ω+ FPi + α+ ε

(1)

where Yi and Pi denote the Human-annotated ground-truth and predicted
attention values at pixel i, respectively. The terms α and ε are smoothing terms,
and wFP is a weighting factor for false positives.

The term LAL enforces attention alignment between the provided Human-
based attention and the model’s attention map, indirectly enforcing the model
to learn features yielding similar attention behavior as for the Human expert.

Classification Learning via Cross-Entropy Loss. This corresponds to
the traditional Cross-Entropy loss term used to learn to solve the main task of
classification. Let yc ∈ {0, 1} denote the ground-truth label for finding c, and
let zc be the corresponding logit output from the classification head. Hence,
the probability of image I to be classified as class c is pc = σ(zc), where σ(·)
denotes the sigmoid function. The cross-entropy loss is computed as LCE =
−
∑

c∈N [yc log(pc) + (1− yc) log(1− pc)] . This loss aligns the classification pre-
dictions with the ground-truth class labels, improving the model’s diagnostic
performance. The final loss is constructed as follows Ltotal = LCE + LAL

Training Details: For training, we used ViT-B [4] as the visual backbone on
an image size of 224 and Med-KEBERT [33] as the textual backbone. The model
was optimized with AdamW using a learning rate of 5× 10−5. The training was
conducted on a single H100 96G GPU with a total batch size of 32 for up to 1000
epochs, applying early stopping with patience of 30 epochs. The best-performing
model was selected based on the highest validation AUC score. wFP is set as 2.0.
Each experiment was repeated five times, with all reported values averaged over
the runs.

3 Results

Human-AI alignment improves fairness gap among different demo-
graphic groups: Table 2 shows the main results of our study assessing the
impact of Human-AI alignment on fairness among demographic groups and per-
formance across three datasets (CheXpert Edema, JSRT Nodule, and CheX-
pert Pleural Effusion). The results demonstrate that, compared to the baseline
model without alignment (i.e., labeled as w/o in Table 2), Human-AI alignment
improves the fairness gap for sex and age groups across different performance
metrics and datasets, with improvements in 27 out of 30 comparisons (i.e., 5
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Fig. 2: Human-AI Alignment flow chart adapted from [18]. The approach is based
on Visual-Language-Model (VLM) fusing image and language embeddings via
cross-attention. The model is trained sequentially for each class per epoch, with
the disease name as a prompt (e.g., "Edema"). Two projector heads are used to
(i) optimize Human-AI alignment, and (ii) perform disease classification.

metrics × 3 datasets × 2 demographic groups, Table 2). Similar trends are ob-
served in Fig. 3, showing that Human-AI alignment improves fairness metrics.
However, exacerbating the alignment can also lead to diminished gains or even
unintended trade-offs in fairness and performance. This finding aligns with the
recent observations reported in [11].

Human-AI alignment improves performance in out-of-domain sam-
ples: Figure 6 shows the effect of Human-AI alignment on out-of-domain sam-
ples for nodule and mass detection, Edema, and Pleural Effusion (Table 1). Each

Table 2: Fairness gap comparison between the baseline model (w/o) and the
Human-AI aligned model (Aligner) across OOD datasets and two demographic
groups. Human-AI alignment reduced fairness gaps in 27 out of 30 comparisons
with notable improvements across metrics (lower is better). The Hit Rate indi-
cates the degree of Human-AI alignment (Higher is better). Best metrics in bold.
Method Dataset Demographic group Accuracy gap (%) ↓ AUC gap↓ Sensitivity gap↓ F1 Score gap↓ Hit Rate↑

w/o [33] CheXpert Edema Age group 3.20 ± 0.19 2.91 ± 0.40 3.86 ± 2.11 3.26 ± 0.44 3.03 ± 1.50
Aligner CheXpert Edema Age group 3.01 ± 0.57 2.01 ± 0.07 2.07 ± 0.42 2.82 ± 0.33 14.47 ± 8.71

w/o [33] CheXpert Edema Gender group 1.69 ± 0.94 1.14 ± 1.25 2.69 ± 2.02 1.62 ± 1.23 3.03 ± 1.50
Aligner CheXpert Edema Gender group 1.27 ± 0.45 0.17 ± 0.10 2.07 ± 0.84 1.01 ± 0.34 14.47 ± 8.7

w/o [33] JSRT Nodule Age group 16.11 ± 2.42 10.47 ± 2.16 38.28 ± 9.69 33.29 ± 9.01 14.47 ± 8.71
Aligner JSRT Nodule Age group 20.09 ± 4.07 11.40 ± 3.31 28.52 ± 5.11 25.98 ± 7.49 22.83 ± 7.96

w/o [33] JSRT Nodule Gender group 7.97 ± 3.30 3.50 ± 2.31 12.91 ± 3.98 6.02 ± 3.52 14.47 ± 8.71
Aligner JSRT Nodule Gender group 8.25 ± 4.31 1.07 ± 1.15 9.59 ± 9.20 7.68 ± 4.70 22.83 ± 7.96

w/o [33] CheXpert Pleural Effusion Age group 9.50 ± 1.82 3.20 ± 0.48 17.42 ± 3.29 12.39 ± 3.52 10.82 ± 4.56
Aligner CheXpert Pleural Effusion Age group 6.14 ± 0.38 3.84 ± 0.16 11.28 ± 1.02 7.51 ± 0.73 24.24 ± 13.33

w/o [33] CheXpert Pleural Effusion Gender group 1.50 ± 0.99 0.21 ± 0.18 2.09 ± 1.24 1.30 ± 0.98 10.82 ± 4.56
Aligner CheXpert Pleural Effusion Gender group 0.83 ± 0.93 0.23 ± 0.20 1.51 ± 1.19 0.64 ± 0.68 24.24 ± 13.33
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Age Group Sex Group

Fig. 3: Fairness-performance trade-off for age and sex groups across five levels
of Human-AI alignment. Blue points represent non-aligned models (0%), while
red-shaded points (25%–100%) indicate increasing alignment. Error bars show
variability, and red-shaded ellipses highlight the trends. Fairness improves up to
75% alignment but degrades at 100%, suggesting an overconstraining effect.

radar chart shows the four performance metrics (higher the better), with and
without human-AI alignment. Results show considerable performance improve-
ments suggesting that Human-AI alignment promoted not only fairness improve-
ments but also performance improvement on out-of-domain datasets, reflecting
an important property for real-world clinical scenarios.

Human-AI alignment ensures stable fairness improvements in low-
data scenarios: Figure 5 shows that Human-AI alignment improves fairness
across all training data ratios, with the most significant impact in low-data
scenarios (25%–50%), where it helps mitigate disparities more effectively.

Randomized Human-AI alignment reduces performance and fair-
ness gap: Figure 4 presents the fairness-performance trade-off when Human-AI
guidance is randomized (green points, the generation of random attention is illus-
trated at Fig1). As expected, randomization degrades performance but also re-
duces fairness gaps, suggesting a decorrelation effect on demographic attributes.
This trade-off aligns with fairness-aware modeling literature, where reducing bias
can sometimes come at the cost of lower performance.

4 Conclusion

Our study provides the first systematic exploration of the interplay between
Human-AI alignment and fairness in medical image classification. Our results
demonstrate that Human-AI alignment consistently reduces fairness gaps across
sex and age groups, with improvements observed across datasets, tasks, and per-
formance metrics, reinforcing the robustness of these findings. Beyond fairness
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benefits, we found that Human-AI alignment enhances out-of-domain performance,
an essential property for real-world clinical deployment. These gains suggest
that aligning model representations with human knowledge not only reduces
bias but also strengthens performance when applied to unseen data, challeng-
ing the notion that fairness-improving interventions necessarily degrade accu-
racy. However, our findings also highlight the need for careful design and cali-
bration of alignment strategies. While alignment generally improves both fair-
ness and performance, excessive alignment can lead to diminished gains or even
unintended trade-offs. Our randomized alignment ablation study further revealed
that misguided alignment degrades performance while also reducing fairness
gaps, suggesting a decorrelation effect between model predictions and demo-
graphic attributes. These results emphasize that the effectiveness of fairness
interventions depends on how they are applied, underscoring the importance of
balancing alignment for fairness and model utility. Overall, these findings high-
light Human-AI alignment as a promising avenue for developing fair, robust, and
generalizable AI models in medical imaging.
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