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Abstract. The multi-scan imaging procedure, involving both multi-
modal and multi-timepoint scans, captures temporal changes and com-
plementary cross-modality information, playing a key role in clinical di-
agnosis. Multi-scan image restoration (IR), which leverages high-quality
reference scans to aid in restoring degraded current scans, holds signif-
icant potential for reducing the cost of the multi-scan procedure. How-
ever, misalignment between scans, arising from patient physiological or
posture changes, impacts the ability of networks to exploit cross-scan
correlations and leads to declined restoration performance. To this end,
we propose a plug-and-play Bridge-Based Module for Misalignment
Estimation and Elimination (BME2), which adopts a coarse-to-fine strat-
egy to estimate cross-scan misalignment. Specifically, a lightweight mis-
alignment estimation (ME) network first predicts the initial deformation
fields, which are then iteratively refined via a latent Schrödinger bridge-
based model to obtain the final estimation. Notably, BME2 can be added
to arbitrary backbones and only introduces mild computational costs.
Validated on brain MRI and abdominal CT datasets, BME2 universally
enhances four baselines, achieving average PSNR gains of 0.54 and 0.65
dB on brain and abdominal data, respectively. The codes are available
at: https://github.com/ChenWenxuan2021/BME2.

Keywords: Multi-Scan Image Restoration · Misalignment Estimation ·
Plug-and-Play · Schrödinger Bridge.

1 Introduction

The multi-scan imaging procedure involves acquiring multi-modal and multi-
timepoint scans from the same patient, which can capture temporal changes
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in disease progression [26] and provide complementary cross-modality informa-
tion [1], offering significant value for disease monitoring, treatment assessment,
and intervention planning. However, traditional multi-scan procedures treat each
scan as an independent process, overlooking the substantial overlapping informa-
tion between scans, which leads to information redundancy and inefficient data
utilization. As a solution, multi-scan image restoration (IR) uses high-quality
reference (Ref) scans from the same patient to help restore degraded (Deg) cur-
rent scans [24, 23, 28, 22], thereby improving data efficiency and reducing imaging
costs in multi-scan procedures.

In recent years, several studies have focused on multi-scan IR, especially in
the multi-contrast MRI field. For instance, Lyu et al. introduced a dual-branch
progressive super-resolution network [19]. Feng et al. proposed networks with
multi-level integration [6] and separable attention mechanisms [7]. Lei et al.
developed a deep variational network to model correlations between multiple
scans [13]. However, these methods did not account for spatial misalignment be-
tween Ref and Deg scans, which may lead to limited performance. Inspired by
reference-based super-resolution [25, 18], some studies attempted to address this
issue by performing global-search-based feature matching [14, 5], but they are
typically computationally expensive. Moreover, these methods may introduce
undesired artifacts when matching and transferring irrelevant textures from Ref
scans. Recent studies proposed deformable attention [2] and difference projec-
tion discriminator [8] mechanisms to alleviate cross-scan misalignment, but their
performance in complex clinical settings, e.g., significant non-rigid misalignment
between multi-scan abdominal images, requires further improvement.

Notably, advancements in diffusion models (DMs) [10, 15] provide new in-
sights into overcoming the limitations of current multi-scan IR methods. Lever-
aging the powerful representation capabilities of diffusion models, some studies
have successfully applied them to predict misalignment fields for registration
tasks [11]. However, directly applying the diffusion model to predicted cross-
scan misalignment still presents some issues. First, conventional DMs performed
in the image space are computationally expensive, especially for high-resolution
medical images. Secondly, as deep generative models, DMs tend to produce hal-
lucinated deformation fields, particularly when predicting large misalignment,
which can be detrimental to detail-sensitive medical images.

Recent studies have explored integrating latent diffusion models (LDMs) into
regression-based backbones for computation efficiency [21, 3]. Additionally, DM-
related bridge-based methods [17] have been proposed to enhance the utilization
of conditional inputs. Inspired by these studies, we consider leveraging deep
generative models to refine the misalignment estimation, such as that in [4, 12],
whereas remaining regression-based image-restoration backbones to ensure re-
construction fidelity. To this end, this paper proposes a Bridge-Based Module for
Misalignment Estimation and Elimination (BME2), providing a plug-and-play
solution for predicting deformation fields between multi-scan medical images.
BME2 employs a coarse-to-fine two-stage strategy, where a misalignment esti-
mation (ME) network first predicts the initial deformation fields. Subsequently,
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Fig. 1. Overview of our proposed method. (A) Embedding of BME2 into backbones,
e.g., a hierarchical network with 3-scale features. (B) Architecture of the misalignment
estimation (ME) network. (C) A typical denoising step on the latent Schrödinger bridge.

the deformation fields are iteratively refined through recursive posterior sampling
using a Schrödinger bridge-based model, thereby achieving good alignment be-
tween multi-scan features and improving output quality. BME2 can be added to
arbitrary backbones and only introduces mild computation costs. In conclusion,
the main contributions of our work include: (1) We introduce the Schrödinger
bridge to multi-scan IR for addressing cross-scan misalignment. (2) We design
a plug-and-play module for misalignment estimation and elimination that can
be embedded into arbitrary multi-scan IR backbones. (3) We conduct extensive
experiments on two datasets to validate the effectiveness of our method.

2 Methodology

Fig. 1(A) illustrates embedding our proposed plug-and-play BME2 into a multi-
scan IR backbone. Note that, BME2 allows the backbone with arbitrary levels,
i.e., both single-scale and multi-scale backbones are applicable, and herein we
mainly introduce the more complicated case with multi-scale features. Specifi-
cally, given the multi-scale Deg and Ref features denoted as {FDeg

lvn ,FRef
lvn} across

N scales (n ∈ {1, 2, . . . , N}), BME2 obtains correspondingly multi-scale defor-
mation fields ϕlvn. In the following sections, we will introduce its two main
components, i.e., the ME network and latent Schrödinger bridge.

2.1 Misalignment Estimation Network

The ME network ϵθ adopts a lightweight U-shaped architecture, which accepts
multi-scale features as inputs. Specifically, the encoder of ME network can be
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expressed as

FOutp
lvn =Enclvn

(
Concat(FDeg

lvn , FRef
lvn , F Inp

lvn)
)
,

F Inp
lvn+1 = Dslvn(F

Outp
lvn ),

(1)

where Enc(·) and Ds(·) indicate encoder and downsampling layers, and F Inp
lvn

denotes the intermediate features obtained by the previous downsampling layer.
There is no F Inp

lv1 and DSlvN at the first and last level, respectively. In the
decoder, we first predict the deepest-level misalignment at the bottleneck layer:

ϕlvN = PredlvN (FOutp
lvN ), (2)

where Pred(·) is implemented by a convolutional layer with two-channel out-
puts to obtain the deformation in the Y and X directions. The prediction of
deformation fields at other levels (n < N) can be expressed as follows:

FDec
lvn = Declvn

(
Concat(Uslvn(F

Dec
lvn+1), FOutp

lvn )
)

ϕlvn = Predlvn

(
Concat(FDec

lvn , ϕlvn+1 ↑)
)
,

(3)

where Dec(·) and Us(·) represent the decoder and upsampling layers, FOutp
lvn is a

skip connection, and ϕlvn+1 ↑ denotes the bilinear interpolation of the previous-
level deformation fields. The outputs of ME network are {ϕlv1,ϕlv2, . . . ,ϕlvN}.

2.2 Bridge-Based Refinement of Misalignment

Using a single ME network to estimate the deformation fields precisely is diffi-
cult when cross-scan misalignment has a large amplitude or complex patterns. To
address this, we leverage the powerful representation capability of Schrödinger
bridge-based model to refine the initially estimated deformation fields. As illus-
trated in Fig. 1(C), the bridge adopts an iterative process of “partially aligning
and residual prediction”. Specifically, given a time step t ∈ (0, 1], i.e., t = 1 and
t = 0 denote the starting and end of the bridge, the Ref features are warped with
a portion of deformation fields. Subsequently, the ME network ϵθ, which shares
parameters with that in Sec. 2.1, is used to estimate the residual components of
misalignment, expressed as

FRef,t
pA = STL

(
FRef , (1− t)× ϕt

)
,

ϕt
Res = ϵθ

(
FDeg, FRef,t

pA

)
,

(4)

where the subscript “pA” of FRef,t
pA indicates the partial alignment of Ref features,

and STL(·) denotes a spatial transform layer. Note that, all equations in Sec. 2.2
omit the subscript “lvn” for simplicity because the ME network simultaneously
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generates the deformation fields at all scales. Then, we calculate the pseudo-
refined deformation fields at the current step, denoted as ϕ̂

0,t
, via the addition

of current prediction and residual components:

ϕ̂
0,t

= (1− t)× ϕt + ϕt
Res. (5)

After that, we recursively update the next-step ϕ by posterior sampling:

ϕt−τ =
σ2
t − σ2

t−τ

σ2
t

ϕ̂
0,t

+
σ2
t−τ

σ2
t

ϕt, (6)

where σ2
t is a scheduling hyper-parameter in the Schrödinger bridge, and τ con-

trols the number of sampling steps (1/τ). Please refer to [17] for more details of
the posterior sampling process.

As shown in Fig. 1(A), the input of the Schrödinger bridge is the coarsely-
estimated deformation fields ϕ1. With the iterative sampling progressing, the
decreasing amplitude of residual misalignment facilitates the increasing predic-
tion accuracy of the ME network. The bridge concludes at t = 0, where we
obtain ϕ0 as the ultimately-refined outputs, which are then used to align Ref
features and eliminate the cross-scan misalignment. The well-aligned Deg and
Ref features are input into the backbone to obtain high-quality restored images.

2.3 Loss Functions

Unlike conventional DMs that randomly sample a time step [10, 20], the plug-
and-play BME2 are jointly trained with regression-based backbones in an end-
to-end manner by running full sampling steps. There are three loss terms, i.e.,
reconstruction loss, correlation loss, and smoothness loss, used to optimize the
network. Reconstruction loss uses the L1 loss between outputs and ground truth
(GT) images. Correlation loss computes the cross-correlation between the aligned
Ref and GT images, similar to that in unsupervised image registration models
[11, 12]. Smoothness loss is a penalty term on the gradient of the deformation
fields. The loss functions can be expressed as

LRec = ∥IOut − IGT∥1,
LCor = −IRef

A ⊗ IGT, where IRef
A = STL(IRef ,ϕ0

lv1),

LSmo =
∑N

n=1

(∑
∥∇ϕ0

lvn∥
)
,

(7)

where ϕ0
lv1 is the refined first-level deformation fields with the same size as Ref

images. The total loss is obtained by

LTotal = LRec + 0.1× LCor + 0.1× LSmo. (8)

3 Experiments

3.1 Dataset

Experiments are conducted on brain MRI and abdominal CT datasets. (1) The
IXI dataset [9], an open-access dataset for brain MRI, contains 498 paired
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Fig. 2. Qualitative comparisons of two cases from the abdominal CT dataset. Models
enhanced by BME2 provide better output quality than those without BME2.

T1-weighted (T1w) and T2-weighted (T2w) volumes, split into training (350
volumes), validation (48 volumes), and testing (100 volumes) sets. (2) An Ab-
dominal CT dataset includes 84 real clinical cases from anonymous hospitals,
with each sample containing scans from two points, i.e., arterial phase (AP) and
venous phase (VP). We split the abdominal dataset into (60, 8, 16) volumes for
training, validation, and testing, respectively.

Data Preparation. For MR images, T1w images are used as high-quality
Ref scans, and T2w images are downsampled into 1/4× lower-resolution coun-
terparts by K-space truncating to simulate Deg scans. We manually introduce
random rigid misalignment between Ref and Deg scans, with a maximum am-
plitude of [−6, 6] rotation and [−8, 8] pixel of translation, similar to those op-
erations in [2]. For abdominal CT images, VP images are used as Deg scans,
with degradation simulated by uniform undersampling sinograms in the Radon
transformation domain. Inherent non-rigid misalignment exists between AP and
VP images due to inevitable soft tissue deformation.

3.2 Implementation

Backbones. Four backbones, i.e., MINet (MICCAI 2021) [6], McMRSR (CVPR
2022) [14], SANet (TNNLS 2024) [7], DANCE (MedIA 2025) [2], are used in the
experiments. Among them, MINet and SANet are based on the spatial alignment
assumption, while MINet-BME2 and SANet-BME2 introduce BME2 to align
Ref features with Deg features before feature fusion. McMRSR and DANCE
employ global correlation search and deformable attention mechanisms for fea-
ture matching; therefore, we replace their feature-matching modules with BME2,
creating McMRSR*-BME2 and DANCE*-BME2, where the asterisk indicates re-
moval of their original feature-matching modules. Besides, two single-image IR
methods, SwinIR [16] and Restormer [27], are also used as comparative baselines.

Implementation Details of BME2. The ME network ϵθ is implemented by
a three-layer U-Net, with the number of channels being (64, 128, 256) from the 1st
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Table 1. Comparative results of models with or without the proposed BME2. The unit
of PSNR is dB. Higher PSNR and SSIM metrics indicate better results.

Brain (rigid) Abdominal (non-rigid)
PSNR SSIM PSNR SSIM

Single
Image

SwinIR 30.45 0.931 35.18 0.907
Restormer 30.99 0.935 35.62 0.916

Multi
Scan

MINet 30.52 0.933 35.91 0.920
MINet-BME2 31.31 0.940 36.59 0.925

McMRSR 31.34 0.942 36.38 0.921
McMRSR*-BME2 31.60 0.944 36.95 0.929

SANet 30.86 0.939 36.82 0.930
SANet-BME2 31.71 0.946 37.70 0.938

DANCE 31.74 0.950 37.36 0.936
DANCE*-BME2 32.01 0.953 37.81 0.939

Table 2. Ablation study on the ab-
dominal dataset. DANCE (abbrevi-
ated as D.) is adopted as the back-
bone for ablation study.

PSNR SSIM
D. 37.36 0.936

D.*-w/o bri 37.29 0.933
D.*-w/o csl 37.66 0.938
D.*-BME2 37.81 0.939

Table 3. Efficiency Study on the abdominal
dataset. FLOPs are based on the image size
of 512×512. S. and D. are abbreviations of
SANet and DANCE.

FLOPs PSNR SSIM
S. 1.658×1012 36.82 0.930

S.-BME2 1.975×1012 37.70 0.938
D. 2.873×1012 37.36 0.936

D.*-BME2 2.728×1012 37.81 0.939

to the 3rd levels. Each level of encoders and decoders of the ME network employs
two convolutional layers with 3× 3 kernels. The scheduling hyper-parameter σ2

t

is identical to that in [17]. The latent Schrödinger bridge has 8 sampling steps,
i.e., τ = 1/8. All models are trained with an initial learning rate of 1 × 10−4,
attenuated by 0.99 at every 1000 iterations until convergence.

3.3 Comparative Results

Quantitative results on the two datasets are provided in Table 1. Overall, multi-
scan IR methods outperform single-image methods by leveraging the guidance
from high-quality Ref scans. For all involved backbones, BME2 consistently
improves the model performance in the presence of both rigid and non-rigid
misalignment, achieving average gains of 0.54 and 0.65 dB in PSNR on brain
and abdominal data, respectively. Fig. 2 provides qualitative comparisons for
several cases from the abdominal dataset. The outputs of SANet-BME2 and
DANCE*-BME2 show improved reconstruction fidelity, with fewer artifacts and
blurs compared to their original versions, proving promising potential in elimi-
nating cross-scan misalignment and accelerating multi-scan imaging.
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Fig. 3. Visualization of deformation fields estimated by BME2. Using the alpha blend-
ing strategy, it can be observed that the initially estimated ϕ1 mitigates the cross-scan
misalignment, while the refined deformation fields ϕ0 further eliminate it.

3.4 Ablation and Efficiency Study

Ablation Study. We conduct an ablation study to explore the effectiveness of
the key components in BME2. In Table 2, “w/o bri’ indicates removal of the latent
Schrödinger bridge and directly using the coarsely-estimated ϕ1 for misalignment
elimination, and “w/o csl” does not utilize the correlation and smoothness loss
terms (LCor and LSmo) for model training. We choose DANCE as the back-
bone. The full DANCE*-BME2 outperforms two ablated models. Interestingly,
the performance of DANCE*-w/o bri is inferior to the original DANCE with
the deformable attention mechanism, suggesting that the coarsely-estimated ϕ1

from a lightweight ME network may not be accurate, demonstrating the impor-
tance of the Schrödinger bridge-based refinement. Besides, Fig. 3 visualizes the
deformation fields via the alpha blending strategy. Compared with the coarsely-
estimated deformation fields ϕ1, the refined ϕ0 possesses more abundant textures
and aligns the IRef

A to IGT with better accuracy, suggesting the effectiveness of
latent Schrödinger bridge to refine the estimated misalignment.

Efficiency Study. Table 3 compares the efficiency for models with and
without the proposed BME2, providing the floating-point operations (FLOPs)
on each 512 × 512 CT image. Thanks to the lightweight ME network and the
relatively small number of iteration sampling steps on the Schrödinger bridge,
SANet-BME2 only introduces 19.1% additional computational costs compared
to the SANet backbone. Moreover, DANCE*-BME2 has fewer FLOPs than the
original DANCE with deformable attention mechanisms while delivering better
performance, suggesting the success of our proposed BME2 to prove an effective
balance between performance and efficiency.

4 Conclusion

In this paper, we propose a play-and-plug latent bridge-based module misalign-
ment estimation and elimination (BME2), which first coarsely estimates the
cross-scan misalignment by a lightweight ME network, and then refines it by



BME2: A Plug-and-Play Misalignment Estimation and Elimination Module 9

recursively performing “prediction and posterior sampling”. We conduct experi-
ments on brain MRI and abdominal CT datasets with rigid and non-rigid mis-
alignment to validate our method. Experimental results show that BME2 consis-
tently improves the performance of four involved backbones while only leading
to mild computation costs, proving good potential for clinical settings.
Limitations. Our experiments have not covered the long-term temporal vari-
ations, such as tumor position and size changes across scans at different time
points. Such applications will be explored in our future work.
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