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Abstract. Deep learning methods have demonstrated promising results
in cervical lesion cell detection. Training detection models that general-
ize well typically require a large amount of cell-level annotations that
are expensive and time-consuming to obtain. Instead, weak slide-level
annotations, which entail assigning a gigapixel whole slide image (WSI)
with a single label, are easier to acquire. However, due to significant dif-
ferences in annotation scales, they cannot be directly utilized to assist
in the training of cervical cell detectors. To address this challenge, we
propose a Twin-memory augmented Multiple Instance Learning (Twin-
MIL) framework to refine cervical lesion cell detection. Firstly, we utilize
the multiple instance learning to bridge the gap between cell-level and
slide-level tasks. Then, we reduce false positives in conventional MIL
by introducing a twin-memory module, which improves the classifica-
tion capability by capturing more discriminative patterns of positive and
negative cells. We also propose uncertainty-regulated negative instance
learning to enhance the robustness of negative latent space against noisy
instances and its separability from the positive one. Experiments indi-
cate that our method is effective in enhancing different detection models
trained on the datasets with varying annotation levels.

Keywords: Cervical lesion cell detection - Whole slide images - Weakly
semi-supervised learning.

1 Introduction

Cervical cancer ranks as the fourth most common cancer among females, with
an annual occurrence of over half a million new cases and 300,000 deaths [22].
Early diagnosis of cervical cancer through formalized screening programs and
HPYV testing allows for fertility-sparing treatment and contributes to a decrease
in both incidence and mortality rates [5]. Among various cervical screening meth-
ods, the thin-prep cytology test (TCT) stands out as one of the most frequently
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Fig. 1. (a) Two annotation types. (b) Our method bridges the gap between lesion cell
detection trained with LCA and slide classification trained with WSA by sharing the
detector’s backbone with the MIL strategy.

used techniques due to its high effectiveness in detecting abnormal and premalig-
nant cervical lesions [12]. Traditionally, TCT is performed by visually examining
stained cells collected on a glass slide under a microscope, followed by the gen-
eration of the diagnosis report according to The Bethesda System (TBS) [15].
However, the examination of gigapixel whole slide images (WSIs) in TCT is often
time-consuming, prone to errors, and demonstrates a high degree of intra/inter-
observer variability [1]. Therefore, there is a pressing need for automated cervical
cell analysis methods to aid cytologists in effectively analyzing cervical cytology
images and delivering accurate, objective, and efficient diagnoses.

The detection of cervical lesion cells plays an important role in the auto-
mated analysis of cervical cytology images [28, 27, 3, 26]. Current studies employ
fully supervised deep learning technology to detect cervical lesion cells in TCT
screening (2,4, 9, 24]. However, these methods heavily rely on abundant cell-level
annotated data, which is often hard to collect due to the time-consuming and
labor-intensive procedure for annotating each cell [16]. One possible approach is
to utilize extra tile-level annotations to assist cell-level detection, which has been
previously studied in the field of cervical cytology. For example, Shi et al. [19]
leveraged cross-attention scores learned from tile classification as pseudo labels
for cell detection. Fei et al. [6] proposed a method to distill knowledge from a
tile classification network to enhance the robustness of cervical lesion cell detec-
tion. However, tile-level annotations are still not easily available in the scenario
of high-resolution cervical cancer analysis. Instead, weak slide-level annotations,
which involve associating a single label with hundreds of tiles, are significantly
more accessible. Although several studies have explored the usage of slide-level
annotations to assist tile-level classification [13,20], the effective incorporation
of slides to enhance cell-level detection remains an open challenge.

In this paper, we propose a Twin-memory augmented Multiple Instance
Learning (Twin-MIL) framework, which enhances cervical lesion cell detection
using a dataset with limited cell-level annotations (LCA) and a dataset with
weak slide-level annotations (WSA). As shown in Fig. 1, Twin-MIL bridges the
gap between cervical lesion cell detection trained on LCA and slide classification
using WSA by sharing the detector with top-K ranking-based MIL. Furthermore,
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Fig. 2. The overview of Twin-MIL. The detection model is initially trained using LCA
and further refined using WSA. The refinement process commences with top-K selection
for relevant tiles, which are further encoded into positive features X? and negative fea-
tures X™ by the detector’s encoder. The twin-memory module processes these features
to yield the similarity scores, and augmented features. The UNIL further constrains the
negative augmented features and enlarges the margin between negative and positive.

a twin-memory module is proposed to enhance the MIL process by capturing
more discriminative patterns from both positive and negative slides. Addition-
ally, uncertainty-regulated negative instance learning is designed to obtain more
separable features of negative latent space and further reduce the false posi-
tives. Our main contributions are as follows: 1) We propose a novel framework
to enhance the detector’s performance by training on hybrid datasets with cell-
level and weak slide-level annotations. 2) We introduce a novel multiple-instance
learning strategy using twin memory augmentation to ensure effective guidance
from both the positive and negative slides. 3) We design an uncertainty-regulated
negative instance learning to improve the separability of latent space and the
robustness against fluctuation. 4) We conduct experiments using various detec-
tors and different dataset conditions, all of which consistently demonstrate the
effectiveness and robustness of the proposed method.

2 Methods

Our purpose is to utilize the weak slide-level annotations (WSA) to enhance
cell-level detection initially trained by limited cell-level annotations (LCA). As
shown in Fig. 2, we present a top-K ranking-based MIL to learn effective repre-
sentations for the detectors. Moreover, we introduce a twin memory module to
generate more discriminative features for MIL using the selected tiles. Further-
more, we propose uncertainty-regulated negative learning to further improve the
robustness and separability of negative latent space from the positive one.
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Fig. 3. (a) The structure of the Twin-Memory Module, which consists of a Positive
Memory Unit and a Negative Memory Unit. (b) The mechanism of the Memory Unit.

2.1 Multiple Instance Learning with Twin-Memory Module

We adopt a top-K ranking-based MIL (8] as the basic framework, and introduce a
cell-level memory-based mechanism to effectively utilize fine-grained priors from
weakly annotated slides. Memory mechanisms have been widely used to retain
key prototypes, but most existing methods rely on a single memory unit, leading
to an overemphasis on positive instances. To address this issue, we introduce a
twin-memory module (TMM), designed to learn discriminative cell-level features
by capturing both positive and negative prototypes. The structure of TMM is
shown in Fig. 3 (a). On the left side, the negative tile features pass through the
twin memory units to form relevant tile output scores and augmented features.
Similarly, the positive tile features follow the same process on the right side.

The mechanism of the Memory Unit is shown in Fig. 3 (b). Similar to previous
work [14], a memory bank is designed as a matrix M € RM*¢ where M and C
are numbers and dimensions of prototypes, respectively. The cell-level features
X € RVHEWXC are obtained by encoding the selected N tiles in a slide, where
H and W are the spatial dimensions of the feature map. The similarity scores
S € RVHEWXM hetween each instance and the prototypes are calculated as:

T
s o () s 8

where o is the sigmoid operation. Then the memory augmentation feature gener-
ated by a read operation is denoted as Mg,4. The top-K most similar prototypes
are selected to produce the rectified similarity scores via

1 K
Sr = ?;tOp—K(S)(,j), (2)

which means the rectified scores are obtained by averaging the top-K sorted
original scores along the second dimension. When sending the negative embed-
ding X" to the positive memory bank, the positive query scores denoted as S7P
should be 0 € RV#W _ Conversely, when X™ is sent to the negative memory bank,
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the negative query scores S™" are constrained to 1 € RV#W . The memory loss
function for negative instances is:

L} = BCE(S"?,0) + BCE(S™", 1), (3)

where BCE means binary cross-entropy.

Different from the negative tiles that only contain negative cells, the positive
tiles might consist of a combination of negative and positive cells. Therefore, the
memory loss function for the positive tiles is:

LP = BCE(— Z top-K (SP?)(i),1) + BCE(— Z top-K (SP™)(1),0),  (4)
which means the loss function only constrains top-K instances for positive tiles.

2.2 Uncertainty-regulated Negative Instance Learning

We further regulate the negative features to improve the robustness against
fluctuations in negative latent space and its separability from positive ones.
Specifically, we update the memory bank to ensure that augmented negative
memory features Mg, , = SM", derived from negative inputs via the negative
memory bank, are distinct from augmented positive memory features M?,, , ob-
tained from positive inputs via the positive memory bank. Similar to the previous
method [17], we achieve this by constraining the negative features with Gaussian
distribution and derivating the positive features out of this distribution. We use
p and o™ to denote the encoded mean and variance (uncertainty) of Mg, ,
and use the reparameterization trick to obtain the negative regulated features

" = u"+0"e, where e ~ N(0,1). We implement Kullback-Leibler loss to ensure
the stability of o via:

Ly = KL(N(z"[u", 6™)|IN (0, 1)). (5)

Similar to the negative slides, we can also obtain the encoded mean p” of
ME,, ;- Based on the presumption that the positive slides are out of distribution,

we use a distance loss to separate them in the latent space:
Lais = ReLU(d — (||?[[3 — ||2"(13)), (6)

where d is a constant that measures the desired discrepancy between features.
The regulated features are combined with the original embeddings X before
feeding to the slide classifier. The multiple instance learning loss function is:

Lyirr = Letige + M (Ly, + LY ) + Ao L + A3Las, (7)

where L. is the BCE loss for the classification of cervical cytology images.
We employ augmented features processed through a fully connected (FC) layer
for slide-level classification. A1, A2, Az are used to balance the auxiliary losses.
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2.3 Optimization

To better utilize MIL and optimize the detector, we adopt the following training
strategy. In the first stage, we train the detector using LCA until it converges. In
the second stage, we optimize the image encoder within the detector using WSA.
At this stage, we freeze the detection head to maintain the learned detection
capabilities. The goal is to improve the representation learning of the image
encoder by leveraging WSA. The total objective function is:

Ltotal = Lcls + Lreg + LMILa (8)

where L., and L., are the ordinary detection loss for each detection head.
During inference, only the optimized detector is used to output the final detection
results without the need for any additional modules or components.

3 Experiments

3.1 Dataset and Experimental Setup

We evaluate the proposed method using two datasets: one with limited cell-level
annotations (LCA) and the other with weak slide-level annotations (WSA). The
LCA dataset comprises a total of 5035 tiles with 7,321 annotated cells, each
with a resolution of 1024x1024 pixels. These images have been meticulously
annotated by three experienced cytologists. The annotation process involved
two cytologists responsible for the initial annotations, and the accuracy of these
annotations was further verified by a third cytologist. The dataset is divided
into training, validation, and test sets with a ratio of 8:1:1, respectively. The
WSA dataset consists of 1000 positive slides and 1000 negative slides. These
slides do not have cell-level annotations by cytologists; instead, they are labeled
solely with positive or negative tags. All samples were obtained from Shanghai
Medical College Hospital, Shanghai Cancer Hospital, and Suzhou Dushu Lake
Hospital. The tiles in the LCA dataset are cropped from the WSI. We divided
the datasets based on patient case IDs, ensuring there is no overlap.

In the first stage, we train the detection network using the LCA dataset.
The initial learning rate is set to le-4, and we use the Adam optimizer with
a weight decay of le-4 and batch size of 4. In the second stage, we finetune
the image encoder using the WSA dataset. We utilize the pre-trained detection
model to perform detection on these slides, selecting the top N=8 tiles based
on their detection scores. The top 8 tiles per slide are fixed. Additionally, we
set the batch size to 2 during this process, which consists of one positive case
and one negative case, with 8 tiles per case. In our implementation, we set the
hyperparameters A; to 0.1, A2 to 0.001, and A3 to 0.0001. Additionally, we set K
to 64 and define the memory bank size as 60. We perform a grid search for key
hyperparameters and select the parameter set that shows the best performance
on the validation set. We conduct a quantitative evaluation using three types of
metrics: the COCO-style [11] average precision (AP), average recall (AR), and
F1-score.
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Fig. 4. Qualitative comparisons of our method on different detectors. The green bound-
ing boxes represent the ground truth annotations, while the red bounding boxes indi-
cate the predicted bounding boxes.

Table 1. Performance comparison with state-of-the-art detection methods.

Method APy5.0.95(%) APos (%) AR (%) Fl-score (%)
Faster R-CNN [18] 30.3 70.4 113 23
Sparse R-CNN [21] 29.4 68.9 43.2 40.4
YOLOVS [7] 33.9 71.0 436 45.8
AttFPN [23] 35.8 76.2 46.6 49.1
Cascade RRAM and GRAM [9] 324 73.8 44.3 45.0
RetinaNet [10] 20.1 70.2 148 ATl
Twin-MIL + RetinaNet 32.7 75.1 49.4 45.5
DINO [25] 36.5 76.0 45.7 49.3
Twin-MIL 4+ DINO 38.1 78.9 47.0 51.4

3.2 Comparison with State-of-the-art Detection Methods

Detectors augmented with Twin-MIL are compared with other state-of-the-art
detection methods for cervical lesion cells to demonstrate the benefits brought
by the weak supervision from slides and the effectiveness of our design. In our
experiments, we apply Twin-MIL to both RetinaNet and DINO detectors. As
indicated in Table 1, leveraging WSA for weak supervision effectively improves
the detection performance. When using RetinaNet as the detector, we observe
a clear improvement in the detection performance, which matches that achieved
by more sophisticated detectors [18,21,9]. Furthermore, by adopting Twin-MIL
for DINO, we achieve a new state-of-the-art performance by a clear margin. We
also visualize the detection results from different detectors. As shown in Fig. 4,
it can be observed that Twin-MIL achieves good performance on RetinaNet and
DINO due to improved identification of lesion cells and reduced false positives.
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Table 2. Performance comparison for different amounts of cell-level annotated data.

Method — APys.0.95 (%) APos (%) AR (%) Fl-score (%)

40% RetinaNet 21.3 52.8 40.2 30.3
+Twin-MIL 25.4 61.3 43.3 35.9
60% RetinaNet 24.2 58.3 39.6 34.2
+Twin-MIL 29.1 68.9 44.1 40.8
80% RetinaNet 28.2 65.9 44.0 39.5
+Twin-MIL 31.5 74.1 48.4 44.2
100% RetinaNet 29.1 70.2 44.8 41.1
+Twin-MIL 32.7 75.1 49.4 45.5

3.3 Weakly Semi-supervised Detection with Different Settings

In this section, we evaluate the effectiveness of the proposed method for different
amounts of cell-level annotated data along with weak slide-level annotations.
We compare the performance of our proposed method with that of RetinaNet, a
baseline model trained solely on the same number of cell-level annotated images.
Table 2 presents the evaluation results, showing the AP 5 and the Fl-score for
different amounts of LCA. Our proposed method achieves improvements in AP, 5
of 3.4%, 8.5%, 10.6%, 8.2%, and 4.9%, and improvements in Fl-score of 1.4%,
5.6%, 6.6%, 4.7%, and 4.4% compared to solely training on the same number of
annotated cell images. It provides evidence that incorporating WSA can be a
valuable strategy for boosting cell detection performance, especially in scenarios
where the number of fully annotated cell images is limited.

3.4 Ablation Study

We further conduct ablation studies to evaluate the components and loss set-
tings in the proposed method. We can learn from Table 3 that the incorporation
of weakly annotated slides using the slide loss (SL) Lgjqe can effectively en-
hance the detector’s performance. Furthermore, it is noteworthy that the twin-
memory module (TMM) is more effective with the introduction of twin mem-
ory loss (TML), whose performance is further improved from 31.5% to 32.0%
in APy 5.0.95 due to the improved discriminability of the negative and positive
instances. In addition, superior results are achieved with the regularization of
uncertainty learning (UNIL), which can be attributed to enhanced robustness
and separability of latent space.

4 Conclusion

In conclusion, we propose a novel Twin-memory augmented Multiple Instance
Learning (Twin-MIL) framework for weakly semi-supervised cervical lesion cell
detection. By leveraging slide-level annotations, Twin-MIL improves the accu-
racy of cervical cell localization and classification. Experiments with different
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Table 3. Quantitative results for the ablation study.

SL TMM TML UNIL AP()‘5;()_95 (%) AP()‘5 (%) AR (%) F1l-score (%)

29.1 70.2 44.8 41.1
v 31.6 72.8 48.5 44.0
v v 31.5 74.1 48.4 44.2
v v v 32.0 74.4 49.0 45.4
v v v v 32.7 75.1 49.4 45.5

dataset settings demonstrate the effectiveness of Twin-MIL in localizing and
classifying cervical cells in cytology images. We also demonstrate the universal-
ity of the proposed method by adopting Twin-MIL to various detection models.
In summary, Twin-MIL provides an effective solution for balancing improved
performance and reduced annotation costs in the field of cervical cytology. In
future work, we plan to integrate Twin-MIL into existing clinical workflows and
conduct comprehensive validation studies to assess its real-world impact on cer-
vical cancer screening programs.
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