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Abstract. The advancement of electron microscopy (EM) imaging tech-
nology has expanded its applications in life science research, making the
automation of EM image analysis a key focus in biomedical imaging. As
a core task in EM image analysis, semantic segmentation has garnered
significant attention, and convolutional neural networks (CNNs) have
been extensively studied, currently emerging as the mainstream method.
However, existing methods still face several unresolved challenges. One
issue arises from the convolution process, which makes it difficult to
efficiently balance global and local information, thus limiting further
improvements in segmentation accuracy. Another issue stems from the
nature of CNNs, which aim to establish an optimal mapping between
images and labels, achieving high accuracy in in-domain data segmenta-
tion but at the cost of a noticeable performance drop on out-of-domain
data. In this paper, we explore the potential of diffusion probabilistic
models (DPMs), known for their exceptional image modeling capabili-
ties, to address these challenges. Specifically, we introduce a diffusion
probabilistic model for the semantic segmentation of EM images, which
we call EM-Cold-SegDiffusion (ECSD). We adopt a cold or deterministic
diffusion framework to achieve higher inference efficiency and a more de-
terministic segmentation process. Additionally, by introducing an edge-
sensitive loss function, we significantly enhance both training efficiency
and model performance. Experimental results on common EM segmen-
tation tasks demonstrate that ECSD outperforms mainstream models,
offering a promising and superior solution for EM segmentation.
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1 Introduction

By capturing biological ultrastructural details, electron microscopy (EM) has
provided unprecedented insights into life science, making it now one of the most
critical tools for understanding biological complexity[17]. To uncover underlying
biological phenomena through quantitative EM image analysis, precise segmen-
tation is a prerequisite(Figure 1). In recent years, deep learning methods have
emerged as the most promising approach for EM segmentation[3]. However, two
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key issues that have persisted in EM segmentation tasks remain unresolved.
First, models lack effective integration of local and global information, limit-
ing further improvements in segmentation accuracy. Second, models are highly
dependent on training data, making it difficult to generalize to data and tasks
outside of the training conditions.

Convolutional neural networks (CNNs) achieved great success in the ISBI
2012 neuron segmentation challenge and have remained a primary focus in the
field of EM segmentation[2]. However, CNNs are limited by the design of their
convolutional kernels, which can only focus on context within a certain range
around the pixels, thus constraining the model’s spatial receptive field. This lim-
itation results in insufficient perception of long-range and global information,
creating a bottleneck in segmentation accuracy. UNet revolutionized the field
by proposing an encoder-decoder architecture with skip connections, success-
fully integrating image features at different scales, which significantly improved
segmentation accuracy[20]. The DeepLab series adopted dilated convolutions to
expand the receptive field without increasing too much computational cost, also
achieving notable results[8]. A network proposed by Lee et al. incorporated an
auxiliary task of predicting long-range affinities during pretraining, allowing the
model to capture a broader context, and for the first time, surpassing human
annotators in the accuracy of EM neuron segmentation[14]. The segmentation
performance improvements of the mentioned models largely stem from their abil-
ity to perceive a broader context within the image. However, due to the inherent
limitations of convolution operations, CNNs struggle to efficiently perceive and
integrate global contextual information.

More than pursuing segmentation accuracy, improving the generalization
ability of models has become an increasingly urgent demand in EM research[9].
While expanding the training data scale is the most fundamental solution to
enhancing generalization, it is often not feasible due to practical constraints.
Because EM annotation is a well-known labour intensive work. To address the
challenge of performance degradation on out-of-domain (OOD) data, several ap-
proaches have incorporated domain adaptation techniques[19, 4]. Additionally,
models trained with self-supervised learning can leverage transfer learning, al-
lowing them to train with fewer labeled data, thereby alleviating the burden of
extensive data annotation. For example, MitoNet combines self-supervised learn-
ing with large-scale supervised training to achieve general mitochondrial segmen-
tation[10]. Recently, emerging foundational models such as Segment anything
model (SAM)[13] have demonstrated general image segmentation capabilities
and have been adapted for domain-specific tasks like electron microscopy seg-
mentation[15, 1, 26, 21]. However, these cutting-edge approaches primarily func-
tion as interactive annotation tools, and their automatic segmentation capabili-
ties remain limited—often even falling short of specialized segmentation models.
This highlights the need to reconsider the inherent limitations of CNN-based
or transformer-based regression models in segmentation tasks, as they rely on
regression to map images to features and ultimately to labels within the train-
ing data (Figure 1 Top). This reliance fundamentally limits their performance
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on out-of-domain data, as they struggle to generalize to unseen images, partic-
ularly when these images belong to distributions that differ significantly from
those seen during training. To date, no effective solution has been found to fully
address this challenge, leaving a critical gap in the field that hinders progress in
EM image segmentation.

Fig. 1. Image segmentation process. Top: Regression-based models is a ”one-step”
process, which maps raw images to segmentation masks. Bottom: Diffusion-based mod-
els is a iterative process, sculpturing images to masks.

In this paper, we attempt to approach the EM segmentation problem from
the perspective of diffusion probabilistic models (DPMs), which is well know for
its excellent generation ability and is now one of the hottest topics in artificial in-
telligence[12]. Our decision is based on the following considerations. During the
denoising and diffusion process, DPM is able to simultaneously capture both
the global structure and pixel-level details of the image data. Additionally, its
iterative nature offers stable training schemes and stronger robustness, under-
scoring its potential for better generalization. Recently, numerous DPM-based
segmentation models have demonstrated excellent performance in biomedical
image segmentation[18, 22, 23]. Given the deterministic characteristics of EM
segmentation and the computational costs involved, we developed our EM-Cold-
SegDiffusion (ECSD) based on previous model, cold-seg diffusion model[24], and
explored its application in EM segmentation (Figure 1 Bottom).

Experiments show that directly applying the cold-seg diffusion model to EM
segmentation leads to suboptimal results. The main challenge lies in the complex-
ity of unlabeled EM images, with significant variation in organelles’ morphology.
To address this, we introduced time-dependent boundary regularization to help
the model focus on contours[5]. This modification significantly improved perfor-
mance in mitochondrial and multi-class segmentation tasks, enhancing accuracy,
generalization, and convergence speed. We believe diffusion models have great
potential to become a major focus in EM segmentation and beyond.
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2 Method

2.1 Overview of EM-Cold-Seg-Diffusion

Our method is built upon the Cold Seg Diffusion framework [24], which consists
of two main processes: diffusion and denoising (Figure 2).

Fig. 2. Overview of EM-Cold-Seg-Diffusion. Forward diffusion process: EM seg-
mentation masks are progressively degraded to corresponding images by gradually
adding raw images. Reverse denoising process: The raw EM images are iteratively de-
noised to generate the final segmentation masks.

Diffusion Process: EM mask images are progressively degraded to EM
original images, defined as a Markov chain (Figure 2 Top):

q(x1:T |x0) :=

T∏
t=1

q(xt|xt−1), q(xt|xt−1) :=
√
1− βtxt−1 + βtz

Where x0 represents the mask image (input label), while xt denotes the degraded
image at time step t. The final degraded image xT is the EM image at the end
of the diffusion process. The predefined degradation rate βt controls the amount
of noise added at each step, and z is the deterministic degradation operator
(non-Gaussian noise) used to degrade the image.

Denoising Process: The original segmentation mask is progressively re-
stored using an improved ResUNet network Rθ (Figure 2 Bottom):

pθ(x0:T−1|xT ) :=

T∏
t=1

pθ(xt−1|xt)
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Where pθ(xt−1|xt) is the conditional distribution of the restored image at time
step t − 1, given the degraded image xt. The improved ResUNet network Rθ

parameterized by θ is used to perform the denoising process. The framework’s
core components are inherited directly from [24],and we briefly introduce their
functions here. The Contrast Enhancement Module (CEM) enhances encoder
features in the frequency domain by applying learnable filters for frequency
weighting. The enhanced features are then reconstructed using the Inverse Fast
Fourier Transform (IFFT) and further refined by integrating the Channel Atten-
tion Mechanism (CAM) and Spatial Attention Mechanism (SAM) to highlight
critical features. Conditional Cross-Attention Module (CCAM) in Figure 2 gen-
erates queries (Q), keys (K), and values (V) from the segmentation encoder and
the conditional encoder, respectively. It utilizes cross-modal attention to guide
the network to focus on the target organelle regions in the EM images that need
to be segmented.

2.2 Boundary-Aware Cold Diffusion Enhancement

Image edge information is extracted explicitly to guide the distribution of learn-
ing weights at different time steps (Figure 3).

Fig. 3. Boundary-Aware Cold Diffusion Enhancement. Top: The calculation
process of the boundary attention map. From left to right: image blurring, Canny
edge detection, distance transform, and generation of the edge attention map. Bottom:
Time-dependent boundary attention. As the denoising process progresses from early
to late stages, more local context is incorporated into the learning process.

Gaussian Blur: Considering the distinct texture and contrast properties
of EM images, we employed a Gaussian blur filter to selectively suppress non-
membrane structures while enhancing the visibility of organelle membranes dur-
ing edge detection (Figure 3 - 1⃝ ).
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Canny Edge Detection: The input image is normalized to the range
[0, 255], and edges are extracted using adaptive thresholds (Figure 3 - 2⃝ ):

edge = Canny(xblur, τlow, τhigh)

Canny is a common edge detection method used to locate edge pixels in im-
ages[6], xblur denotes the Gaussian-blurred image, τlow and τhigh are two hyper-
parameter thresholds.

Distance Transform and Normalization: Then, the Euclidean distance
transformation algorithm[11] is used to calculate the L2 distance of each pixel
to the nearest non-zero pixel. The grayscale output shows pixel-wise distances
to edges. (Figure 3 - 3⃝ ):

distx = DT(edge)
An inverse distance weight map is then generated (Figure 3 - 4⃝ ):

inv_distx =
S · 1.1415− distx

max(distx)

Where S denotes the image size, and 1.1415 serves as a correction coefficient for
the L2 norm, which is

√
2 inherited from Dermosegdiff [5].

Time-Adaptive Boundary Attention: A time-decay factor is introduced
to dynamically adjust the focus on boundary regions (Figure 3 - 5⃝ ):

Watt = inv_dist(γ·
T−t
T )

γ

x

where t is the current time step, T is the total number of steps, and γ = 0.8
controls the shape of the decay curve. Boundary enhancement is disabled for
samples with low foreground occupancy (area < 1%).

Composite Loss Function: The composite loss function Ltotal is defined
as:

Ltotal =
1

m

m∑
i=1

∥xi,0 − f(xi,t, t)∥2︸ ︷︷ ︸
Basic Prediction Loss

⊙ Watt︸︷︷︸
Boundary Attention Weights

3 Experiments and Results

To validate the effectiveness of our method in EM segmentation, we tested it on
common tasks of increasing difficulty: mitochondrial segmentation and multi-
class organelle segmentation. Additionally, we conducted an ablation study to
highlight the importance of our specific loss function in achieving efficient EM
segmentation.

3.1 Datasets and evaluation metrics
For mitochondrial segmentation, we used the Lucchi++ datasets [7]. For multi-
class segmentation, we utilized the beta-seg dataset[16] to segment mitochon-
dria, Golgi apparatus, cell nuclei, and insulin secretory granules. In the abla-
tion study, we compared our modified model with the original cold-seg-diffusion
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model. Segmentation performance was evaluated using the Jaccard index and
Dice coefficient.

3.2 Implementation Details

The Gaussian blur, Canny and DT methods are implemented by the OpenCV
library.

For model training, we follow Cold-Seg-Diffusion [24] and set the diffusion
steps T = 50. Input patches are cropped to 512×512 for Lucchi++ and 256×256
for BetaSeg, both with a batch size of 2. We use the AdamW optimizer with an
initial learning rate of 4× 10−5, weight decay of 1× 10−6, and a cosine warmup
schedule.

To enhance the model’s generalization ability and mitigate overfitting, several
data processing techniques are applied during training. On one hand, boundary-
overlapping sampling is utilized to strengthen boundary feature learning, ensur-
ing the model focuses more on critical boundary information. On the other hand,
data augmentation techniques such as random flipping, cropping, and rotation
are implemented to enrich the diversity of training samples.

The entire method is implemented based on the PyTorch framework and
trained on a workstation equipped with 8 NVIDIA Tesla A100 GPUs to ensure
efficient computation.

3.3 Mitochondrial segmentation results

GobletNet[25] is a recently published work that achieved state-of-the-art per-
formance across EM segmentation tasks. We compare our model with it and
original Cold-Seg Diffusion model on the segmentation of the Lucchi++ dataset.
Quantitative results show that our model outperforms GobletNet in Jaccard
index and Dice coefficient Table 1. The segmentation results demonstrate that
mistakes made by other models are corrected by our model (Figure 4). It worth
to be noted that the original Cold-Seg Diffusion model is not as good as our
model, even lower than GobletNet. And to achieve table performance, Cold-Seg
Diffusion model need 130 training epochs and our model only need 70 epochs.

Table 1. Comparison of Segmentation Performance

Method Lucchi++ Betaseg
Jaccard Dice Jaccard Dice

SAM[25] 68.23 81.11 41.57 48.99
SwinUNet[25] – – 39.16 47.37
GobletNet[25] 81.66 89.91 69.74 80.25
Cold-Seg-Diffusion 79.73 88.72 66.12 76.20
Our method 87.11 93.11 73.92 83.09
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Fig. 4. Segmentation performance on Lucchi++ dataset. Three cases of segmen-
tation results. From left to right, raw EM images, ground truths, GobletNet, Cold Seg
Diffusion and our model. The arrows of different colors in the figure represent distinct
types of errors, as indicated in the legend.

3.4 Multi-class organelles segmentation results

Multi-class segmentation is regarded more difficult than individual semantic
segmentation. But the results follow similar trend. Our model exhibits better
evaluation index and segmentation results (Table 1 and Figure 5). Similarly,
the original model exhibit unsatisfactory results, while our model with added
boundary regularization significantly improves its performance. Additionally, to
achieve the results in Table 1, the original model requires 140 epochs to train,
while our model converges to optimal performance in just 80 epochs.

4 Discussion and Conclusion

In this study, we treat electron microscopy (EM) image segmentation as a special
type of generative task, and through cold diffusion, we achieve the generation
of segmentation results from the raw images. To the best of our knowledge, this
is the first attempt to apply a diffusion model to solve the EM segmentation
task, and the experimental results demonstrate the advantages of this approach
in terms of segmentation performance. However, this work has not yet fully
exploited the capabilities of diffusion models. Given the rapid development and
flexibility of diffusion models, we believe they have the potential to be extended
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Fig. 5. Segmentation performance on Betaseg dataset. The arrows of different
colors in the figure represent distinct types of errors, as indicated in the legend.

to other EM tasks, including recognition, registration, and more, providing a
possible foundation for building general models in the EM domain.
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