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Abstract. Deep Learning (DL) has revolutionized medical imaging, yet
its adoption is constrained by data scarcity and privacy regulations, lim-
iting access to diverse datasets. Federated Learning (FL) enables decen-
tralized training but suffers from high communication costs and is often
restricted to a single downstream task, reducing flexibility. We propose a
data-sharing method via Differentially Private (DP) generative models.
By adopting foundation models, we extract compact, informative em-
beddings, reducing redundancy and lowering computational overhead.
Clients collaboratively train a Differentially Private Conditional Varia-
tional Autoencoder (DP-CVAE) to model a global, privacy-aware data
distribution, supporting diverse downstream tasks. Our approach, val-
idated across multiple feature extractors, enhances privacy, scalability,
and efficiency, outperforming traditional FL classifiers while ensuring
differential privacy. Additionally, DP-CVAE produces higher-fidelity em-
beddings than DP-CGAN while requiring 5x fewer parameters.

Keywords: Federated learning - Generative model - Differential privacy.

1 Introduction

Deep Neural Networks (DNNs) have driven remarkable advancements in medical
imaging, yet their adoption in clinical practice remains constrained by limited
data availability and stringent privacy requirements [26]. Medical datasets are
siloed across institutions, and low-prevalence diseases further limit the availabil-
ity of diverse, high-quality training data [18]. While collaborative data sharing
could mitigate these challenges [25], strict privacy regulations (e.g., HIPAA,
GDPR) make centralized dataset aggregation infeasible. To address these con-
straints, Federated Learning (FL) [20] has emerged as a privacy-preserving alter-
native, allowing institutions to collaboratively train models without sharing raw
data. A widely adopted strategy, FedAvg [20], aggregates model updates from
participating clients to construct a global model. However, FL introduces several
challenges. Communication overhead remains high, particularly when deploying
deep architectures such as Vision Transformers (ViTs) [6], which significantly
increases transmission costs. Furthermore, FL is typically restricted to a single
downstream task (e.g., classification, segmentation), limiting generalizability.

* Equal contribution. Code available at github.com /myngl5 /federated-dp-cvae.
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To mitigate transmission costs, most FL research focuses on lightweight archi-
tectures, which often come at the expense of model performance and robustness.
An alternative to model-sharing is data-sharing via privacy-preserving synthetic
data generation, which reduces communication overhead while enabling broader
downstream applications [12,14]. Several works have explored federated gener-
ative models for this purpose (see [8] for a comprehensive review). However,
generating realistic, task-relevant synthetic data remains challenging, as it of-
ten requires a large number of diverse training samples to ensure fidelity to the
original distribution. While Generative Adversarial Networks (GANs) [9] and
diffusion models [10] achieve high-fidelity image synthesis, they exhibit notable
limitations [12]. GANs suffer from mode collapse, producing low-diversity syn-
thetic data, while diffusion models are computationally expensive and exhibit
high latency, making them impractical for resource-constrained federated envi-
ronments. In contrast, Variational Autoencoders (VAEs) and Conditional VAEs
(CVAESs), despite producing lower-fidelity images, e.g., blurred reconstructions,
offer notable advantages. In fact, they avoid mode collapse while being more
computationally efficient than GANs and diffusion models.

While VAEs and CVAEs have been explored in federated settings, prior work
has primarily applied them to simpler generative tasks, such as MNIST-like
datasets [24], sensor data [11], or joint training with a downstream classifier [2],
limiting their adaptability. A recent work has demonstrated that generating syn-
thetic feature embeddings using a CVAE preserved classification performance,
comparable to real embeddings, while enhancing data privacy [5]. A key enabler
of this approach is the use of foundation models [22], known to be robust to do-
main shifts [23]. Furthermore, these models produce compact and diagnostically
relevant feature representations while reducing redundancy in raw images and
enabling low-cost downstream learning. Training a CVAE on feature embeddings
rather than raw images allows to better capture feature distributions, making it
less susceptible to fidelity degradation. This motivates our extension of CVAE to
a federated setting, where, as illustrated in Figure 1, clients collaboratively train
a differentially-private global generative model. Unlike prior FL settings, our
approach decouples generative modeling from task-specific constraints, allowing
greater flexibility across applications. In summary, our contributions are:

— We propose a lightweight federated generative model with differential privacy
to address data scarcity and enable privacy-preserving data sharing in med-
ical image analysis. Our approach decouples data-sharing from downstream
tasks, enhancing generalizability and adaptability across applications.

— We empirically demonstrate that our federated generative approach and
subsequent downstream training outperform traditional federated classifiers
across multiple datasets, achieving higher balanced accuracy.

— We show that training a lightweight CVAE on feature embeddings achieves
higher fidelity than GAN-based approaches while requiring approximately
5x fewer parameters, significantly improving computational efficiency.
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Fig. 1. Illustration of our proposed methodology. (1) Each client H encodes its image-
based dataset D into an embedding-based dataset S using a large, pre-trained foun-
dation model @, reducing data storage requirements and computational overhead. (2)
Clients collaboratively train a lightweight DP-CVAE (€, D) and periodically share de-
coder weights, which are aggregated into a global decoder D®. This shared decoder
captures cross-client variation while preserving local data privacy. (3) Each client inde-
pendently generates a synthetic dataset S using the globally trained generative model,
and (4) utilizes (real) local and (synthetic) global data for any downstream task f.

2 Method

2.1 Feature extraction

Traditional FL pipelines often use lightweight architectures [27,28] to mitigate
communication overhead and computational demands. However, this may com-
promise robustness and generalization, which are essential in medical image anal-
ysis for capturing high-quality feature representations. To address these limita-
tions, we utilize a (shared) large pre-trained foundation model to extract com-
pact, informative feature embeddings while substantially reducing the inherent
information redundancy of raw images. While any feature extractor can be used,
in this work, we adopt DINOv2 Base [22] due to its state-of-the-art performance
across different domains and tasks. Considering a federation of M clients, each
client m holds a private image-based dataset D,, := {(d}*, y™)};™, where d"
represents the i-th raw image and y]" € ) is its corresponding label. After ap-
plying feature extraction locally using a pre-trained foundation model, the raw
images are transformed into feature embeddings, resulting in the feature-based
dataset S, := {(x}", y[")}iy where x]* € X, is the feature embedding of d".

2.2 Federated- and differentially-private generative model

CVAE A recent study [5] demonstrated that generating synthetic training sets
at the embedding level, rather than raw images, introduces privacy preservation
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while observing only minimal performance degradation in downstream classifica-
tion. Following this approach, we adopt a CVAE with a symmetric architecture,
consisting of three linear layers for both the class-conditional encoder and de-
coder. The model is trained by minimizing a reconstruction loss (Mean Squared
Error) while enforcing latent space normality through a Kullback-Leibler (KL)
divergence loss with a standard normal prior.

Differential Privacy (DP) To enforce formal privacy guarantees, we inte-
grate Differential Privacy [1,7], ensuring that the synthetic embeddings remain
indistinguishable with respect to the presence or absence of any single data
point in the original dataset. This is achieved by bounding the sensitivity of the
generative model to individual samples, thereby preventing adversaries from re-
constructing or inferring specific data points from the released synthetic dataset.
DP-CVAE ensures that the posterior distribution of the generated embeddings
remains statistically similar irrespective of whether a given sample is included in
the training data. We enforce (¢, ¢)-differential privacy by introducing calibrated
noise into the generative process. Formally, a mechanism M applied to the pri-
vate dataset S, is (e, 0)-differentially private if, for any two neighboring datasets
Sm and S/, differing by at most one sample, and for any possible output S

PrM(S,,) € Sn] < e PrM(S)) € Sm] +6, €>0,6€(0,1) (1)

where (¢, ) is an upper bound on the privacy loss between before and after
an individual was added to the dataset, giving us a formal privacy guarantee. To
achieve this, we integrate DP-SGD [1] into the CVAE training process, where
noise N(0,0?) is added to the per-sample gradients, ensuring that each model
update is differentially private. Before adding noise, we clip gradients so that
they have a maximum /5 norm of C' to limit the influence of a single data point.
Notably, each client performs DP locally on their CVAE before sending the
local decoder to the server to update the global CVAE decoder. Any outputs
of the resulting CVAE perturbed by the DP noise are guaranteed to protect an
individual’s data used in training according to the chosen e. However, this noise
comes at the cost of utility loss, which grows as e decreases.

Model aggregation and data generation Each client maintains a personal-
ized encoder, which adapts to its local data distribution, mapping samples into
a shared latent space. Meanwhile, the decoders are jointly trained using a Feder-
ated Averaging (FedAvg) strategy, ensuring that the aggregated decoder learns a
globally representative feature reconstruction function while remaining compact
and efficient. Formally, at each communication round ¢, the server aggregates
the decoder weights 07"  from all M participating clients as follows:

dec
M train
(t+1) _ } : m,(t) _ m
Hdec - wmedec ’ Wm = M train (2>
m=1 Zm:l My,
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where in';’c(t)

932;1) represents the updated global decoder parameters distributed back to the
clients. Once the federated training of the global decoder is completed, each
client utilizes it to generate a synthetic dataset that approximates the global
data distribution while ensuring privacy preservation. Given a target synthetic

dataset size N, each client constructs its global dataset S, as follows:

represents the decoder parameters of client m at round ¢, and

Smo={(s 0}y, K= Decyer (2 | §i) (3)

where z; ~ N(0,1) is sampled from a standard normal Gaussian distribution,
i ~ C is sampled from a selected class distribution, and Dec,+1) is the globally
dec

trained decoder obtained after FedAvg aggregation.

2.3 Downstream classification

In our setup, each client has access to both a local (private) dataset and a global
dataset, the latter generated using the shared global decoder. This setup enables
clients to train models tailored to their specific downstream tasks. For instance,
clients can utilize the same synthetic data to train classifiers with different label
granularities, model data distributions for anomaly detection, address out-of-
distribution (OOD) detection problems, and more.

We consider image classification as the primary downstream task for a stan-
dardized evaluation. The availability of both local and global datasets enables
personalized FL, in which each client trains a personalized model while still bene-
fiting from other clients’ knowledge. For example, kNN-Per [19] uses client-level
local memorization to improve individual performance but still jointly learns
the global representations, and FedRep [4] aims to learn a shared feature rep-
resentation across clients. In contrast, we take advantage of the shared feature
representations of a foundation model and train for each client one model on
the local data and another on the global (synthetic) data for the downstream
task (instead of for representation learning). The final classification prediction is
obtained through a weighted interpolation between these two models, controlled
by a tunable parameter \,,, which is optimized based on the validation set to
balance local specialization and global generalization. For a test sample Xgest,
the interpolated probability distribution is computed as:

P)\m (y | Xtcst) = Amplocad(y | Xtcst) + (]- - )\m)Pglobal(y | Xtcst) (4)

where A, € [0, 1] determines the trade-off between personalization and global
knowledge. The final predicted class fiest iS given by:

gtest = argmax P)\m (y | Xtest) (5>
ceY

Intuitively, as A, — 1, the model prioritizes local data, utilizing client-
specific knowledge. Conversely, as A, — 0, the model relies more on globally
shared information, benefiting from knowledge aggregated across the federation.
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3 Experimental results

3.1 Experimental settings

Datasets and metrics We evaluate the downstream classification performance
of our method across two distinct classification settings. Following [17], we use
the Abdominal CT dataset (Sagittal view) [29], utilizing the splits from [30].
It presents 25,211 images across 11 classes. We distribute the data among 10
clients, simulating IID conditions, together with highly non-IID conditions using
a Dirichlet distribution (o = 0.3). Furthermore, as in [3], we use a subset of 4,600
images from Camelyonl17-Wilds [13], a binary dataset consisting of histopatho-
logical images from five hospitals, treated as five individual clients. Each local
dataset is further split into train—val-test (60:20:20). While Camelyon17-Wilds
is class-balanced, the CT dataset is imbalanced, therefore, we report the overall
mean and standard deviation across clients of accuracy and balanced accuracy.

Implementation details Both the federated and locally trained classifiers are
implemented as single-layer linear models, a standard approach for evaluating
foundation model embeddings [22]. Both the Fed Avg classifier and our DP-CVAE
are trained for 50 communication rounds, with 5 local epochs per round, using
the SGD optimizer with a learning rate of 1x1073. We apply DP to our CVAE
and, for comparison, to a Conditional GAN (CGAN), using the OPACUS library
[31], with (e,0) = (1.0,1x107%) and a clipping norm of 1.5. This choice, with ¢ <
1 and § < 1/n, where n is the average number of training samples per client in
our experiments, ensures meaningful privacy guarantees while maintaining data
utility [15,21]. The interpolation parameter A, (c.f. Equation 4) is automatically
selected from {0.0,0.1,...,1.0} based on validation set performance. Lastly, our
downstream classifiers are trained separately on local and global data, using
Adam optimizer with a learning rate of 1x10~3 for 100 epochs. For comparison,
we evaluate FedAvg and its enhanced version, FedProx [16], which addresses non-
IID data by adding a regularization term that penalizes large deviations from the
global model. As a direct competitor to our approach, we include “FedLambda”,
our adapted version of kKNN-Per [19], where the local kNN component is replaced
with a local linear classifier and the global classifier is trained through FedAvg.

3.2 Downstream classification

Table 1 presents the classification results across different experimental settings.
Overall, federated data-sharing schemes using generative models outperform fed-
erated classifiers, with DP-CVAE achieving the highest performance in most
cases. Notably, incorporating the local predictions under personalized FL set-
tings leads to a substantial improvement over standard Fed Avg, highlighting the
benefits of a personalized adaptation. Furthermore, it is important to note that
these federated classifiers (including FedLambda) are not differentially private,
whereas our approach enforces differential privacy guarantees, which may have
a slight impact on performance. In the heterogeneous CT setting (o = 0.3), our
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Table 1. Accuracy (ACC) and balanced accuracy (BACC), averaged across clients
over three seed runs, between federated classifiers and our proposed data-sharing and
classification method. We highlight in bold the top two methods.

CT (1ID) CT (a=0.3) Camelyon
ACC BACC ACC BACC ACC

FedAvg 73.33+£1.14 67.00+1.15 64.85+5.88 58.74+2.93 90.62+2.34
FedProx 73.264+1.19 66.95+1.17 64.764+6.13 58.66+5.84 90.6542.01
FedLambda 77.21+0.80 71.32+0.91 81.03+3.83 59.08+2.54 92.5441.03

DP-CGAN 77.60+1.36 71.94+1.18 88.84+1.99 57.49+2.41 93.95+0.98
DP-CVAE 77.54+0.76 71.84+0.82 88.94+1.35 57.58+3.33 94.49+1.28

method achieves comparable or slightly lower balanced accuracy than federated
classifiers, yet it substantially outperforms them in terms of accuracy. The most
notable performance gap between our generative-based approach and federated
classifiers is observed on Camelyonl7, where each client has an average of solely
500 train samples. This underscores that our generative method remains highly
effective even under limited-data conditions. Furthermore, while DP-CGAN and
DP-CVAE achieve comparable performance overall, DP-CVAE notably outper-
forms DP-CGAN on Camelyonl7, suggesting that CVAE is less data-hungry,
making it particularly suited for limited-data scenarios. Lastly, the parameter
Am, which weighs the local model predictions per client, yields the best accu-
racy in the range 0.4 —0.7. This reflects a balanced mix of local and global data,
thereby empirically confirming the high utility of the synthetic data.

3.3 Ablation studies

Choice of the generative model This ablation study compares DP-CVAE
and DP-CGAN in their computational efficiency and ability to preserve the
original data distribution. We compute the average Wasserstein distance (W)
between each client’s real dataset and the synthetic dataset they generate using
the globally trained DP-CGAN or DP-CVAE decoder. As shown in Figure 2,
DP-CVAE consistently achieves a lower W, indicating better fidelity. Notably,
DP-CVAE requires 5x fewer parameters than DP-CGAN, enhancing efficiency
and reducing latency, making it more suitable for FL.

Generalizability and robustness Utilizing CT (IID) as a reference, we demon-
strate in Figure 3 that our approach generalizes effectively across different (Small)
backbones, including DINOv2, DINO, and ViT, maintaining consistent classi-
fication performance. Additionally, as the number of clients increases, leading
to fewer samples per client, it exhibits a minimal performance drop. This sug-
gests that our approach is data-efficient and remains robust across varied feature
representations and dataset sizes.
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Fig.2. Reconstruction fidelity, Fig. 3. Generalizability of our method across
measured by the Wasserstein different backbones and increasing numbers of
distance (W |) between real and clients (i.e., fewer samples per client), utilizing
synthetic samples, comparing DP- CT (IID). The dashed lines represent the BACC
CVAE and DP-CGAN. Results obtained when training a linear classifier on real
are analyzed in relation to the image embeddings with the original train—val—
number of model parameters. test split.

4 Discussion

Limitations and future work Although generative models trained on embed-
ding spaces are more efficient and less data-demanding, they remain susceptible
to data and label imbalance, a well-known challenge in federated learning. This
limitation can be addressed by incorporating techniques from long-tailed learn-
ing [32], enhancing robustness across imbalanced distributions. Furthermore, our
current generative model samples embeddings with a fixed unit variance. Intro-
ducing learned or class-specific variance parameters could improve the quality
and expressiveness of synthetic embeddings, leading to better downstream per-
formance. Finally, conditioning the generative model on additional confounders
(e.g., domain-specific attributes) could further enhance data diversity and mit-
igate inherent biases in the training distribution, improving generalization and
fairness in real-world applications.

Conclusions This work introduces a federated learning method that shifts from
traditional (downstream) model-sharing to privacy-preserving data-sharing, uti-
lizing DP-CVAESs trained on foundation model embedding spaces. Unlike con-
ventional FL approaches that are constrained to a single downstream task, our
method enables flexible and adaptive synthetic data generation, allowing clients
to tailor their datasets for diverse applications. Through comprehensive experi-
ments on medical imaging datasets, we demonstrated that our approach outper-
forms federated classifiers, achieving substantially higher accuracy. Additionally,
we showed that training a lightweight CVAE on feature embeddings preserves
data fidelity more effectively than GANs, while requiring significantly fewer pa-
rameters. These findings position our approach as a promising alternative for
enabling secure, flexible, and high-performance FL in medical image analysis.
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