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Abstract. Multimodal data holds significant value in the diagnosis of
Alzheimer’s disease (AD). However, in real-world applications, factors
such as privacy protection, acquisition costs, and sensor failures often
lead to data missingness, posing challenges for incomplete multimodal
learning. Currently the artificial intelligence-based diagnostic methods
for AD on incomplete multimodal data have gained increasing attention.
However, existing approaches typically overlook modality distribution
discrepancies and suffer from severe performance degradation under re-
covery paradigms lacking reconstruction experience. To address this chal-
lenge, we propose an Adaptive Graph Distribution Consistency Modal
Recovery Network Based on Normalizing Flows (AGDiC) to tackle in-
complete multimodal learning in neuroimaging. We develop a novel frame-
work integrating adaptive graph learning with normalizing flows and a
modality regularization strategy. This framework focuses adaptive graph
attention features on modality distributions while ensuring distribution
consistency of recovered data, and employs masked cross-attention to
facilitate multimodal fusion. Unlike conventional methods, our model
can handle arbitrary modality missingness during both training and in-
ference phases without relying on reconstruction experience. Extensive
experiments are conducted using three neuroimaging modalities from
the ADNI dataset: sMRI, fMRI and PET. Results demonstrate that our
method achieves state-of-the-art performance and exhibits remarkable
stability across various random missing rates.

Keywords: Incomplete multimodal learning · Alzheimer’s disease · Nor-
malizing Flows · Graph Neural Network · Multimodal fusion.

1 Introduction

Alzheimer’s Disease (AD) is an irreversible neurodegenerative disorder, and early
diagnosis is critical for improving prognosis and delaying disease progression
[4][18]. Currently, structural MRI (sMRI), functional MRI (fMRI), and Positron
Emission Tomography (PET) data can each reflect the brain’s biomarker features
from different perspectives. However, compared to sMRI, the acquisition of fMRI
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and PET is more challenging. In particular, PET faces challenges in real-world
applications due to the high radiation risk and cost of imaging, which often
results in incomplete multimodal learning [3][23].

For incomplete multimodal learning, existing approaches can be divided into
non-recovery methods and recovery methods. Non-recovery methods can be
broadly classified into grouping strategy-based, correlation maximization-based,
knowledge distillation-based, and latent space-based [25][12][8][24]. For example,
Zhou et al. [29] and Chen et al. [5] address the issue of missing modalities by
establishing modality relationships through deep representations, projecting this
latent space into the label space for AD diagnosis. However, non-recovery meth-
ods still struggle with handling complementary information among modalities
and lack flexibility. Recovery methods estimate and reconstruct missing modali-
ties, which can generally be categorized into zero-based recovery, average-based
recovery, and deep learning-based recovery [15][26][16][11]. Deep learning-based
methods tend to offer more advantages. For instance, Pan et al. [14] proposed
a feature-consistency generative adversarial network to estimate missing PET
images in MRI for AD diagnosis, whereas Wang et al. [20] synthesized more dis-
criminative PET images via joint learning for multimodal fusion. However, they
overlooked the distribution discrepancies among modalities. Subsequently, Wang
Y et al. [21] introduced a flow-based distribution consistency recovery paradigm
for modality reconstruction. Nevertheless, current recovery paradigms assume
that modality data in the training stage are complete or available. Specifically,
they often rely on complete real data during training to empirically correct the
generated modalities and only support missing modality inputs at the testing
stage. They fail to address the more realistic recovery paradigm in which there is
a lack of "reconstruction experience." Under such a paradigm, the performance
of existing models degrades significantly, which is the core issue we aim to tackle.

To overcome the challenges mentioned above, we propose a novel Adaptive
Graph Distribution Consistency Modal Recovery Network Based on Normaliz-
ing Flows (AGDiC), which can adapt to the missing modalities during both the
training and inference processes of multimodal tasks while ensuring accurate AD
classification. The main contributions of our work are as follows: 1) Unlike ex-
isting methods, our AGDiC model can address the recovery paradigm that lacks
reconstruction experience, supporting the missing of any modality during both
the training and inference stages. To the best of our knowledge, this is the first
work on incomplete multimodal learning in neuroimaging under this paradigm.
2) We develop a novel modality regularizer based on normalizing flows, aimed
at capturing modality distribution differences and ensuring the stability of the
recovered modalities. At the same time, we integrate adaptive layer memory at-
tention graph learning with flow-based generation strategies to precisely capture
the key structural features of each modality. 3) Through multimodal masked
cross-attention, we facilitate effective modality fusion. Experimental results on
three modalities (sMRI, fMRI, and PET) from the ADNI dataset demonstrate
that our method achieves significant performance improvements compared to
existing techniques in multiple random missing scenarios.
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Fig. 1. The AGDiC model consists of three modules: layer memory attention graph
convolution, cross-modal distribution transfer, and multimodal fusion. For simplicity,
it is assumed that PET modality is missing in this figure, but in practice, any modality
may be missing, as long as at least one modality is available for each subject.

2 Method

Our AGDiC framework is shown in Fig. 1. For clarity and without loss of gen-
erality, it is assumed that the PET modality is missing. The model consists of
three main components: layer memory attention graph convolution, cross-modal
distribution transfer, and multimodal fusion. First, specific brain network matri-
ces are constructed for sMRI, fMRI, and PET as the initial features. Next, a set
of graphs is adaptively learned for each modality to accommodate layer memory
attention at different stages. Then, cross-modal distribution transfer is used to
estimate the distribution of the missing modality, and empirical correction is
performed through a modality regularizer after the three encoders. Finally, mul-
timodal fusion is carried out through masked cross-attention for classification.

2.1 Adaptive Multimodal Graph Learning

Let the tuple
(
X (1),X (2), . . . ,X (M)

)
denote the M different modalities of a

sample. Define an indicator λ ∈ {0, 1}, where λm = 0 indicates that the m-th
modality is missing, and otherwise, λm = 1. Thus, the goal is to recover the
missing modalities Mmiss = {m | λm = 0} based on the observable modalities
Mobs = {m | λm = 1}. Considering the differences among fMRI, sMRI, and
PET data, we construct a specific brain network matrix for each as the initial
feature. First, all modality data are parcellated into ROIs using the AAL brain
atlas template [19]. For fMRI, the ROI average time series is obtained, and then
the Pearson correlation coefficient (PCC) is computed between ROI time series:
X {f}

i,j = PCC
(
si, sj

)
∈ RN×N , which serves as the initial fMRI feature. For

PET, a Fisher transform-based approach is employed to compute the correlation
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coefficient between the i-th and j-th ROIs, yielding the individual feature matrix
for PET [2]: X {p}

i,j =
[
exp

(
2×E(i, j)

)
− 1

]
/
[
exp

(
2×E(i, j)

)
+1

]
, where E(i, j)

denotes the connectivity matrix of the PET SUVR feature between the i-th
and j-th ROIs, i.e., a weight matrix calculated based on the difference in the
effect size of average uptake between individual subjects and the average NC
subjects [27]. For sMRI, gray matter features are first extracted, and the same
computation method as for the PET individual features is applied to obtain the
individual feature X {s}

i,j . At this point, the initial individual feature matrices for
fMRI, PET, and sMRI, X {f,p,s} ∈ R116×116, are used as the input to our model.

Treating ROIs as nodes and constructing edges based on the relationships
between ROIs is a common approach, which facilitates subsequent feature ex-
traction using Graph Neural Networks (GNNs). We adopt an adaptive graph
construction method for modeling each modality to flexibly extract multimodal
structural features [6]. Specifically, an Multi-Layer Perceptron (MLP) is used to
adaptively learn the adjacency matrix Aij for each modality for feature updat-
ing to prevent over-smoothing in the GNN. This is achieved by constraining the
most relevant nodes through a sparse graph neighbor attention mechanism:

A(k) =
∥∥∥MLP(k)

(
U(x (k)

i ,x (k)
j )

)∥∥∥ , s.t. A(k)
i ≤ θV, θ ∈ (0, 1] (1)

where k denotes the number of graph convolution layers, θ represents the edge
construction ratio, and A(k)

i ∈ R1×V . U(·, ·) calculates the cosine similarity
between the features of the i-th and j-th nodes, which is then passed through an
MLP to learn a node attention matrix. Finally, the sparse attention adjacency
matrix for each layer of graph convolution is given by Â

(k),m
= A(k),m+I , m ∈

Mobs, where I is the identity matrix. Following the representation in [10], the
output of the layer memory attention graph convolution at the (k + 1)-th layer

can be expressed as: Fk(X (k),W (k)) = ρ(Â
(k)

X (k)W (k)) ∈ RV×h. To avoid
over-smoothing and overfitting of neighboring node information, we choose to
use the "early memory" of intermediate layers for later data transmission. The
output of the (k + 1)-th layer GNN can be expressed as:

X (k+1) =
[
X (k), Fk

(
X (k),W (k)

)]
∈ RV×(d+kh) (2)

where W (k) ∈ Rd×h. After passing through n layers of GNN, the output X(k+n)

is subjected to global max pooling (GMP) and global average pooling (GAP),
yielding the deep features for each modality, X(m),m ∈Mobs.

2.2 Flow-based Distribution Transfer and Modality Regularizer

Normalizing flows, proposed by Dinh et al. [7], are a classical generative prob-
abilistic model, also known as flow-based generative models. As suggested in
[21], let Ψ (m) represent the normalizing flow model for modality m, and its
inverse transformation is denoted as (Ψ (m))−1. For example, when fMRI and
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sMRI modalities are available and the PET modality is missing, X (f) and X (s)

can be input into Ψ (f) and Ψ (s) to obtain the multimodal latent states under
Gaussian distribution, Z (f) ∼ N (µc, Σc) and Z (s) ∼ N (µc, Σc). We perform
averaging to sample the latent representation of the missing PET modality as
Z̃

(p) ← (Z (f),Z (s))/2 ∼ N (µc, Σc). Then, we inject this into (Ψ (p))−1 to gener-
ate a sample X̃(p) with the PET modality distribution. The process is as follows:

X̃
(p)

= (Ψ (p))−1
(
[Ψ (f)(X (f)) + Ψ (s)(X (s))]/2

)
(3)

To ensure that all latent space representations are discriminative under a
multivariate Gaussian distribution, we introduce labels to adaptively learn the
Gaussian distribution for specific classes. The loss function for cross-modal dis-
tribution transfer, LMDT, can be defined as:

LMDT = −
∑

m∈Mobs

[
log pZ (m)

(
Z (m) | y = c

)
+ log

∣∣∣det(∂Z (m)/∂X (m)
)∣∣∣] (4)

where the first term represents the log-density of Z (m) under its own class con-
dition, and the second term represents the log-determinant of the normalizing
flow model for modality m.

Previous incomplete multimodal learning models tend to rely on real ex-
perience to correct the recovered modalities. However, when the model lacks
reconstruction experience during training, such models may suffer severe degra-
dation. Therefore, even without such external assistance, it is necessary to ensure
the stability of the flow-based recovery strategy and to encourage the modality
encoders to perform self-correction. To this end, the output X̂

(m)
from modality-

specific encoders is used both for cross-modal fusion and as input to the modality
regularizer to assist in decision-making. The modality regularization loss is:

LAR = −
M∑
m

N∑
i

C∑
c

ymic log(p
m
ic ) (5)

where M is the number of modalities, N is the number of samples, and C is the
number of classes. yic is an indicator function, which is 1 if sample i belongs to
class c, and otherwise is 0. pic is the probability predicted by the model that
sample i belongs to class c.

2.3 Masked Cross-Attention Modal Fusion

Modal interactions provide new information that may negatively affect predic-
tions [17] [28]. Inspired by the Transformer [22], we use self-attention to capture
these interactions, introducing a masking mechanism to limit unnecessary ones.
The masked self-attention is: Attn(Q,K, V ) = softmax

(
(QKT )/

√
dz +Π

)
V,

where Q, K, and V are the Queries, Keys, and Values obtained from the To-
kens, and dz is the projection dimension. Π is the mask matrix, where each
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element of Π is 0 for interactions between observable modalities, and otherwise
is −∞, to reduce the noise generated by unnecessary interactions. Finally, the
fusion features are passed to the classifier for classification. The total loss is:

Ltotal = LCE + αLMDT + βLAR (6)

where LCE is the cross-entropy loss, and α and β are adjustable hyperparameters.

3 Experiments

3.1 Materials and Experimental Setup

We use data from three modalities from ADNI2 [1], as shown in Table 1, which
include resting-state fMRI, T1-weighted MPRAGE sMRI, and FDG-PET. The
preprocessing workflow for all raw imaging data follows the methods of Zhang
et al. [27] and Gu et al. [9]. Not every subject has complete modality data. In
the classification tasks for Healthy Controls (HC), Early Mild Cognitive Impair-
ment (EMCI), and Late Mild Cognitive Impairment (LMCI), there is inherent
missingness in the multimodal data. For convenience, the modality missing rate
is defined as η = 1−(

∑N
i=1

∑M
m=1 Jim)/(N×M), where N is the number of sub-

jects, M is the number of modalities, and Jim is an indicator function, which is 1
if modality is present for a subject, and 0 otherwise. According to this definition,
the default missing rate for the three-class task is approximately 0.328.

Table 1. The data information used in the experiment.

Category Number of samples Default
Miss RatesMRI fMRI PET

HC/EMCI/LMCI 211/185/170 162/150/131 52/38/42 0.328

All experiments used 5-fold cross-validation with 100 epochs. The Adam
optimizer, with a learning rate of 0.0001 and hyperparameters α = 0.1, β = 0.5,
and edge ratio is 0.3. The model ran on a GeForce RTX 4080 GPU with PyTorch.
The modality missing rate was consistent across training and testing, ensuring
at least one modality per subject. Additionally, we conducted experiments with
random modality deletion and increased missing rates of 0.4 and 0.5. Evaluation
metrics included accuracy (Acc), recall (Rec), and F1 score (F1).

3.2 Comparison with Other Methods

The comparison methods can be divided into two categories: 1) Non-recovery
methods, including the latent space-based OLFG [5] and G-SLC [13]; 2) Recovery-
based methods, including the GAN-based DSDL [14], flow-based DiCMoR [21],
and joint learning-based JLCM [20]. All methods were evaluated under the same
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Table 2. The evaluation results of each model under different modal missing rates in
different tasks are represented as the average of 5-fold cross-validation.

Task Method
Modal Miss Rate η

Default 0.4 0.5
Acc Rec F1 Acc Rec F1 Acc Rec F1

HC
vs

EMCI
vs

LMCI

OLFG (2023) 53.54 53.41 52.45 51.76 51.11 50.12 49.65 49.61 48.26
G-SLC (2024) 61.67 61.11 61.1 60.61 60.17 60.08 57.07 56.25 56.09
DSDL (2021) 59.00 58.57 57.51 54.60 54.78 53.27 48.23 47.31 44.40
DiCMoR (2023) 65.37 65.01 65.13 63.26 63.23 62.98 57.24 57.06 56.90
JLCM (2024) 62.36 62.29 61.39 53.89 53.47 52.89 49.64 48.37 44.76
Ours 75.96 75.76 75.70 70.67 70.55 70.45 62.54 62.36 62.17

EMCI
vs

LMCI

OLFG (2023) 60.28 59.27 56.19 58.31 59.02 55.15 57.46 57.09 52.69
G-SLC (2024) 68.45 68.23 68.20 67.89 67.81 67.62 65.07 64.79 64.68
DSDL (2021) 73.80 73.72 73.41 69.01 68.51 67.77 60.28 58.91 51.65
DiCMoR (2023) 71.27 71.12 71.09 70.42 70.31 70.28 66.48 66.41 66.25
JLCM (2024) 73.80 73.60 73.32 70.14 70.21 69.19 65.92 66.03 64.66
Ours 80.56 80.73 80.53 74.37 74.62 74.27 69.30 69.32 69.11

experimental settings and appropriately adapted. Comparative experimental re-
sults are shown in Table 2, which includes two tasks: the three-class classifica-
tion (HC vs EMCI vs LMCI) and the binary classification (EMCI vs LMCI). As
shown in the table, our method achieves the best performance metrics across all
tasks. First, recovery-based methods generally outperform non-recovery meth-
ods, and they exhibit higher stability across different missing rates. Second, the
compared recovery-based methods, which rely on reconstruction experience dur-
ing training, perform worse when effective reconstruction is lacking. In the three-
class task, our method improves accuracy by 10.59%, 7.41%, and 5.3% compared
to the second-best method in different scenarios. Similarly, in the binary classi-
fication task, our method also shows significant performance improvements.

3.3 Ablation Study and Parameter Sensitivity Analysis

We conducted an ablation study to validate the effectiveness of key modules in
our model. The implementations are as follows: 1) w/o ReFlow: Remove the
flow-based generation module with regularization; instead, a zero-filling method
is used to recover missing modalities. 2) w/o MAT: Remove the masked cross-
attention in the multimodal fusion module; instead, feature concatenation is used
for modality fusion. 3) w/o AR: Remove the auxiliary regularization module,
so that the encoder output is used solely for multimodal fusion.

In the HC vs EMCI vs LMCI task, the experimental results are shown in
Table 3. First, ReFlow has the greatest impact on performance: when ReFlow is
removed, the full model’s performance drops by 9.0% (Acc) and 9.21% (F1) un-
der the default setting. Second, removing MAT results in a smaller performance
decrease, with drops of 1.76% (Acc) and 1.92% (F1) under the default missing
rate. Interestingly, when AR is removed, Acc increases by 0.71% under the de-
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Table 3. Comparison of Ablation Results, presented as the average of 5-fold.

Key Modules
Modal Miss Rate η

Default 0.4 0.5
Acc Rec F1 Acc Rec F1 Acc Rec F1

w/o ReFlow 66.96 66.69 66.49 63.96 63.77 63.68 57.59 57.27 57.20
w/o MAT 74.20 73.92 73.78 68.72 68.52 68.47 62.37 61.80 61.59
w/o AR 76.67 76.56 76.50 67.66 67.52 67.44 61.31 61.19 61.06
Ours 75.96 75.76 75.70 70.67 70.55 70.45 62.54 62.36 62.17

Fig. 2. The Effect of Parameters α and β on Experimental Performance

fault setting compared to the full model. This phenomenon may be because, at
low missing rates, the model relies less on recovered data and requires less latent
distribution regularization. However, as the missing rate increases, removing AR
leads to decreases in Acc of 3.01% (for η = 0.4) and 1.23% (for η = 0.5) relative
to the full model. This indicates that in the absence of reconstruction experience,
a higher missing rate allows AR to better stabilize the modalities.

We analyze the parameters α and β from Eq 6. In the three-class classification
task, we conduct experiments by varying one parameter while fixing the other.
Fig.2 shows the impact of parameter variations on Accuracy (Acc) under different
scenarios. First, the optimal range for α is between 0 and 0.2, indicating that
a small α is beneficial for modality recovery. Second, the optimal value for β is
around 0.5, suggesting that a larger β helps stabilize classification performance.
Overall, the optimization of model performance with respect to both parameters
is relatively stable, demonstrating the robustness of the model.

3.4 Conclusions

We propose AGDiC, aiming to address the issues caused by incomplete modali-
ties during model training and inference, especially focus on the paradigm lack-
ing reconstruction experience in recovery strategies. Based on fMRI, sMRI, and
PET, AGDiC introduces a novel flow-based adaptive graph learning and modal-
ity regularization strategy that not only effectively captures the structural fea-
tures of each modality but also guides the model to learn precise modality rep-
resentations. Experimental results on the ADNI dataset demonstrate that our
model achieves state-of-the-art performance across multiple tasks and scenarios.
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