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Abstract. Acute ischemic stroke is one of the major causes of mortality
and disability worldwide. Although thrombectomy is an effective inter-
vention, it carries a lot of risks such as hemorrhage and vascular injury.
Thus, it is crucial to accurately predicting postoperative infarct before in-
tervention, providing the guidance for treatment. The existing perfusion
imaging techniques relying on fixed thresholding approaches mostly fail
to account for individual differences in collateral circulation recruitment,
which has been proven to effectively reflect infarct severity. In this work,
we take the first step toward integrating collateral circulation status into
deep neural network, enabling the model to learn and capture hemody-
namic cues for infarct prediction. Specifically, we establish the first brain
computed tomography perfusion (CTP) dataset including collateral cir-
culation status and further conduct a thorough analysis of its effective-
ness in predicting infarcts. Based on the findings, we propose a novel
multi-modal fusion module4 that integrates spatiotemporal features of
multiple modalities. Specifically, a bi-directional Mamba structure is de-
veloped to extract the sequential information, which is then fused with
collateral priors via a mixture-of-experts mechanism. In addition, a two-
stage infarct prediction module is developed to successively localize and
segment the infarct region under the guidance of collateral circulation
status. Finally, both infarct localization and segmentation performance
of our method are validated to outperform 14 state-of-the-art methods.

Keywords: Postoperative infarct prediction · Collateral circulation sta-
tus · CTP · Multi-modality fusion.

1 Introduction

Acute ischemic stroke, characterized by its high mortality rate and rapid progres-
sion, often leads to severe disability even with timely treatment [24]. Thrombec-
tomy is effective on acute ischemic stroke, especially in patients with large vessel
⋆ Corresponding author: Lai Jiang (jianglai.china@buaa.edu.cn)
4 Codes are available at https://github.com/Frankenstein2026/CCGM
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occlusion and minimal irreversible tissue damage on neuroimaging [5]. However,
patients still experience poor outcomes due to futile recanalization and face risks
such as hemorrhage and vascular injury [33]. Thus, accurately predicting post-
operative infarct before intervention is crucial for guiding treatment decisions.
Widely utilized in clinical practice, perfusion imaging assesses the preoperative
ischemic condition of brain tissue by conducting multi-phase imaging. Nonethe-
less, existing techniques mostly rely on fixed thresholding approaches, which fail
to account for individual differences in collateral circulation recruitment, lead-
ing to less accurate prediction. Therefore, it is crucial to develop a precise and
automated methodology for infarct prediction leveraging collateral circulation
status, which can effectively reflect cerebral perfusion and infarct severity [20].

With the rapid development of artificial intelligence, deep neural networks
(DNNs) have shown significant potential in medical image tasks, such as disease
diagnosis [2, 26] and lesion segmentation [3, 32]. Among them, several DNN-
based works are developed for postoperative infarct prediction upon multiple
modalities, e.g., CT [22], MRI [21] CT perfusion (CTP) [27], and non-contrast
CT (NCCT) [16]. For instance, Liu et al. [21] developed a residual attention
network for infarct segmentation on MRI. Similarly, Marcus et al. [22] introduced
a Transformer method to model global feature of CT scans. However, there
remains a gap in developing collateral circulation based methods for infarct
prediction, both in terms of data availability and DNN architecture. In this
paper, we take the first step toward integrating collateral circulation status into
DNN, enabling the model to learn the hemodynamic cues for infarct prediction.

To address the above issue, we propose a novel collateral circulation guided
multi-modality (CCGM) fusion network for postoperative infarct prediction.
Firstly, we establish the first CTP dataset incorporating the collateral circula-
tion status, including the preoperative CTP scans, 4 perfusion parameter maps, 3
collateral maps and the postoperative infarct maps. Through the analysis of our
dataset, we find the strong correlation of the collateral maps and brain infarct.
Inspired by the findings, our CCGM method is proposed with a multi-modality
fusion (MMF) module to fuse the CTP scans, the parameter maps and the col-
lateral maps. Specifically, a Mamba-based structure is developed to extract the
spatiotemporal features of CTP scans, and then a mixture-of-experts mechanism
is introduced to fuse the multi-modal information, according to the specialized
knowledge of each parameter map. Besides, an infarct prediction module is de-
veloped to successively localize and segment the infarct, under the condition of
collateral maps. Finally, both infarct localization and segmentation performance
of our CCGM method are validated to outperform 14 state-of-the-art methods.
In summary, the main contributions of this paper are three-fold.
– We establish the first brain CTP dataset with collateral priors for postopera-

tive infarct prediction, and analyze the effectiveness of collateral circulation.
– We propose a novel multi-modal fusion module to fuse the spatiotemporal

features from input modalities, based on the developed bi-directional Mamba
structure and mixture-of-experts mechanism.

– We introduce a two-stage conditional network, which learns to localize and
segment the brain infarct guided by the collateral supply status.
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Fig. 1. (a)-Randomly selected examples of our CTPPC dataset with CTP scans, de-
rived images and infarct maps. (b)-The correlation between the areas of collateral maps
and brain infarcts. (c)-Segmentation results utilizing different derived modalities.

2 Dataset Establishment and Analysis

2.1 Dataset Establishment

We establish the first brain CTP dataset with collateral maps for postoperative
infarct prediction, namely CTPPC, which includes the preoperative imaging
data from 161 patients, containing 3,439 brain slices. Specifically, the dataset
comprises the whole-brain volumetric CTP imaging, along with 7 derived medical
modalities of 4 parameter maps and 3 collateral maps, and the labeled groud-
truth infart maps. As shown in Fig. 1-(a), the CTP scans and the derived images
are all registered and reshaped into the same size. All the data in CTPPC were
collected from the topmost hospitals in China, which was conducted according
to the Declaration of Helsinki.

– Preoperative CTP scans. Before intervention, the CTP scans of the pa-
tient is obtained via the intravenous administration of a contrast agent, and
then followed by continuous multi-phase imaging of the brain, consisting of
15 sequential scans in a brief period. This imaging technique monitors the
distribution of the contrast agent within the brain, allowing for the assess-
ment of changes in tissue density throughout critical biological phases, i.e.,
arterial inflow, tissue perfusion, and venous outflow.

– Preoperative perfusion parameter maps. The parameter maps are com-
puted based on CTP scans using commercial analysis toolkit (Shukun, Bei-
jing, China), including cerebral blood flow (CBF), cerebral blood volume
(CBV), mean transit time (MTT), and Tmax [17]. They deliver detailed
information on brain tissue perfusion, facilitating the detection of ischemic
areas and the assessment of the extent and severity of cerebral ischemia.

– Preoperative collateral status maps. In the CTP scans, we identify 3
critical phases of pathophysiological significance, i.e., peak arterial phase,
peak venous phase, and late venous phase [10, 25, 29]. Specifically, we calcu-
late the global voxel grayscale value differences between each voxel in these
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phases and the first phase (no contrast agent inflow). Voxels lacking effec-
tive collateral supply are identified if the grayscale values remain unchanged,
which are designated as arterial-phase risk tissue (ART), venous-phase risk
tissue (VRT), and late-venous-phase risk tissue (LRT), respectively.

– Postoperative infarct areas. As for the ground-truth of the infarct predic-
tion, the final infarct areas are manually outlined on postoperative diffusion-
weighted imaging (DWI) or NCCT images. Two experienced radiologists,
blinded to clinical information, independently conducted all manual segmen-
tations, with any differences resolved by consensus.

2.2 Dataset Analysis

Based on our CTPPC dataset, we perform data analysis and obtain the following
findings about the correlation between collateral maps and brain infarcts.
Finding 1: The areas of collateral map and infarct region are highly correlated.
Analysis: Here, we investigate the correlation between the areas of collateral
maps and the postoperative infarct region. Specifically, we calculate the areas
of the collateral map and the infarct sizes by counting the corresponding pixels.
Then, the collateral maps are uniformly splitted into five groups according to
the areas, i.e., <1000, 1000-3000, ..., >7000 pixels. For each group, the averaged
infarct sizes are depicted in Fig. 1-(b) and are shown to increase with the areas
of the collateral maps. The above results show that the areas of collateral maps
and infarct sizes are highly correlated. This completes the analysis of Finding 1.
Finding 2: Collateral maps can obviously improve the infarct prediction accu-
racy of existing DNN models.
Analysis: Here, we further explore the impact of collateral maps for infarct
prediction. Specifically, 2 widely-used segmentation models (Swin-UNet [4] and
TransUNet [6]) are leveraged to predict the postoperative infarcts given different
derived images concatenated with CTP scans. The results are evaluated by the
segmentation accuracy in terms of Dice score [9]. As shown in Fig.1-(c), together
with the CTP scans, the collateral maps tend to bring significant performance
gain, which is higher than that of the parameter maps. The above results indicate
that the collateral maps can obviously contribute to infarct prediction, which
complete the analysis of Finding 2.

3 Method

In this section, we introduce our collateral circulation guided multi-modality
(CCGM) fusion network for brain infarct prediction. As shown in Fig. 2, our
CCGM method is developed with a multi-modality fusion (MMF) module to
fuse the modalities of CTP scans, parameter maps and collateral maps, as well
as an infarct prediction module to successively localize and segment the infarct
regions, under the guidance of collateral circulation status. Specifically, in MMF
module, a Mamba structure is developed to extract the spatiotemporal feature
of the T -length CTP scans {xt ∈ RH×W×1}Tt=1 with a size of H ×W , which is
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Fig. 2. Architecture of the proposed CCGM network, in which SSM and FFN denote
state space model and feed forward network, respectively.

then fused with the derived parameter maps {zi ∈ RH×W×1}4i=1 and collateral
maps xc ∈ RH×W×3 via a mixture-of-experts mechanism, to obtain the multi-
modal feature xf for the following module. In infarct prediction module, inspired
by our findings, the collateral maps are initially embedded as collateral prior f c

for infarct prediction. Finally, conditioned by f c, the multi-modal feature xf is
leveraged to localize and segment the infarct region in a two-stage manner.

3.1 Multi-modality Fusion (MMF) Module

As shown in Fig. 2, in MMF module, the CTP scans {xt}Tt=1 are first input
to a bi-directional Mamba to extract the spatiotemporal feature. Subsequently,
the extracted feature is integrated with the collateral maps xc using the expert
knowledge of each parameter map zi, within a transformer-based architecture.
The details are introduced below.

Mamba-based Feature Extraction. Inspired by [19], a bi-directional Ma-
mba structure is developed to capture the spatiotemporal feature of the sequen-
tial CTP scans. Specifically, the input CTP scans {xt}Tt=1 are first projected into
L non-overlapping 16 × 16 patches xp ∈ RL×256. Given the projected patches,
the Mamba block M(·) merges the spatial and temporal features via both for-
ward and backward state space models, followed by a self attention block Self(·)
to extract the attented feature xs:

xs = Self(M(xp + ps + pt)), (1)

where ps and pt denote the spatial and temporal embedding, respectively.
Experts-oriented Feature Fusion.
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Since the parameter maps can reflect different blood flow properties, a mixture-
of-experts mechanism [35] is developed to further represent the spatiotemporal
feature xs of CTP, by taking each parameter map as a specialized expert. Specif-
ically, the 4 parameter maps {zi}4i=1 are first concatenated and encoded via a
self attention block to merge the inter-channel information into {zsi}4i=1. Then,
the CTP feature xs is fused with each parameter map zsi by the cross attention
blocks {Crossi(·)}4i=1 into {hi}4i=1:

hi = Crossi(x
s, zsi), zsi = Self([z1, · · · , z4])i. (2)

Next, following [35], a gating network G(·) is leveraged to score the expertises of
the cross attention features {hi}4i=1 corresponding to different parameter maps.
Given the scores {gi}4i=1, the outputs of the following feed forward networks
FFN(·) are fused by a score-guided fusion block, comprising of a weighted ad-
dition and a Dense block [13] FDB(·). Consequently, as illustrated in Fig. 2, the
experts-oriented feature fusion can be formulated as,

xf = FDB

([∑4

i=1
giFFNi(hi), xc

])
, gi = Softmax(G(h))i. (3)

Finally, the fused multi-modal feature xf merged with diverse expert knowledge
is leveraged to the following infarct prediction module.

3.2 Infarct Prediction Module

As shown in Fig. 2, the infarct prediction module includes a collateral prior
guided infarct localization network to predict the infarct bounding box in an
anchor-free manner, as well as a collateral prior guided infarct segmentation
network to obtain the infarct map based on a multi-scale UNet. Besides, inspired
by our findings, a condition embedding block composed of a Dense block is
leveraged to encode the feature of collateral maps into the conditional guidance
f c. The details are introduced as follows.

Conditioned Infarct Localization. The infarct localization is developed
on the top of FCOS [8], with feature pyramid network and multi-scale prediction
heads. Specifically, the input multi-modality feature xf with the collateral con-
dition f c are first encoded by a VoVNetV2 backbone with one-shot aggregation
(OSA) [18] blocks FOSA

j (·) into the feature pyramid {xp
j }5j=1:

xp
j =

{
Conv([xf , f c]), j = 1,

FOSA
j (xp

j−1), j = 2, · · · 5,
(4)

where j denotes the pyramid level. Then, each single-scale head individually
predicts the bounding box from corresponding xp

j . As illustrated in Fig. 2, each
prediction head includes three outputs: the classification score c ∈ RH×W×2,
the centerness p ∈ RH×W×1, and the bias b ∈ RH×W×4 from the center (u, v)
to the four edges, i.e., b(u, v) = (l, r, t, d). Finally, the pixel of head j̃ with the
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Table 1. Results for infarct prediction.

Methods Dice(%) ↑ HD95(mm) ↓ ASSD(mm) ↓ Acc.(%) ↑ Prec.(%) ↑ Recall(%) ↑
SAN-Net 30.35±24.22 61.05±32.91 21.28±18.57 91.35±5.19 32.17±29.31 43.74±31.85
CA-Net 31.03±28.68 73.24±44.74 36.00±30.40 93.70±4.75 39.53±37.63 33.39±31.30
SiNGR 31.17±33.70 59.29±41.74 30.72±35.09 93.39±5.17 44.72±37.39 35.76±38.98

Bi-JROS 34.30±29.50 38.96±20.47 17.54±14.78 93.65±4.86 40.73±35.21 40.27±34.80
Factorizer 34.56±28.17 39.02±20.42 17.75±14.23 92.20±4.50 38.24±34.42 47.42±35.74
FAT-Net 35.64±29.43 68.58±36.79 30.77±25.73 92.33±5.31 39.63±32.90 50.69±38.48

UNet 43.01±32.17 45.42±36.73 18.05±20.99 93.58±3.87 50.62±37.16 47.47±36.67
nnUNet 43.76±29.71 62.76±42.71 27.00±26.10 92.80±4.60 42.12±33.31 58.01±33.75

Swin-unet 48.00±27.27 50.38±38.80 20.26±23.05 93.80±3.93 50.81±31.82 60.60±31.79
Transunet 50.83±27.34 48.31±37.74 18.11±18.95 93.19±3.69 54.56±32.48 60.70±31.13
Attn UNet 52.57±28.07 42.69±35.59 18.63±19.75 90.34±3.84 53.35±32.52 60.63±31.51
CCGM 56.34±28.14 38.06±37.81 17.13±23.69 94.07±6.45 59.63±34.45 65.60±32.50

Table 2. Results of IoU for infarct localization.

Methods FCOS CenterNet CenterMask CCGM (ours)
IoU (%) 32.93±21.97 34.42±23.36 40.99±28.86 49.32±30.48

highest score of classification and centerness among the pixels of all the heads
determines the infarct center (ũ, ṽ) and the edge biases bj̃(ũ, ṽ):

j̃, ũ, ṽ = max
j,u,v

cj(u, v)pj(u, v), bj̃(ũ, ṽ) = (l̃, r̃, t̃, d̃). (5)

Finally, following [18], the centerness c, classification score p and the bound-
ing box (ũ, ṽ, l̃, r̃, t̃, d̃) are supervised by the cross-entropy loss, focal loss and
intersection over union (IoU) loss, respectively.

Conditioned Infarct Segmentation. For segmentation, the multi-modality
feature xf is first combined with collateral condition f c and cropped into xbb

0 =
Crop([xf , f c]). On the top of [23], the segmentation model consists of a UNet en-
coder, decoder and attention gates as {Ek(·),Dk(·),Ak(·)}Kk=1, where k denotes
the layer level of UNet. Let xbb

k denote the output of each UNet encoder, and
the infarct map within the predicted bounding box ybb can be calculated as,

fbbk = Ak(Ek(x
bb
k ) + Dk(Ek(x

bb
k ))) · Ek(x

bb
k ), ybb = Softmax(fbbK ), (6)

where Dk(·) = Convk(MConvk(·)). Here, MConv(·) denotes the multi-scale con-
volution [15]. Then, given the predicted bounding box, the cropped map ybb can
be projected back to the segmented infarct map y. Finally, the segmentation is
supervised by the Dice loss and focal loss.

4 Experiments

4.1 Experimental settings

We conduct extensive experiments to evaluate the performance on infarct predic-
tion. Specifically, training and test slices are randomly divided as a ratio of 4/1,
with a size of 256×256 pixels. For training, the parameters are updated by SGD
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Fig. 3. (a)/(b)-Segmentation/localization results of ablation on modalities. (c)/(d)-
Segmentation/localization results of ablation on model design.

optimizer with an initial learning rate of 1×10−4 and weight decay of 3×10−5.
Note that the segmentation and localization networks are trained separately. All
the experiments are conducted with an AMD EPYC 7542 32-core CPU and an
NVIDIA RTX 4090 GPU, with a training batch size of 8.

4.2 Evaluation on infarct prediction

We compare our performance with the state-of-the-art methods for brain infarct
prediction. For infarct segmentation, we finetune 11 medical image segmentation
methods on our CTPPC dataset, inluding SiNGR [7], Bi-JROS [11], SAN-Net
[31], Factorizer [1], Swin-unet [4], FAT-Net [30], Transunet [6], nnUNet [14],
CA-Net [12], Attention UNet [23] and UNet [28]. Note that all the modalities
are leveraged as the input of the compared algorithms. We use Dice score, 95%
Hausdorff distance (HD95), average symmetric surface distance (ASSD), accu-
racy, precision and recall rate to evaluate the segmentation performance. As
shown in Tab. 1, our CCGM outperforms all the compared methods in terms of
all 6 metrics, which achieves at least 3.77% improvement of Dice score, 0.9mm
reduction of HD95, and 0.41mm reduction of ASSD. Besides, for infarct localiza-
tion, Tab. 2 also shows that our method outperforms 3 bounding box prediction
methods: CenterNet [34], FCOS [8] and CenterMask [18], in terms of IoU. The
above results validate the effectiveness of our method for infarct prediction.

4.3 Ablation study

Here, we conduct ablation experiments to validate the effectiveness of modality
fusion and model design. Specifically, we first investigate the performance of
infarct segmentation and localization under different modal fusion: 1) CTP, 2)
CTP and parameter maps (PMs) and 3) CTP and collateral maps (CMs). As
shown in Fig. 3-(a), the Dice scores degrade from 56.34% to 53.19%, 53.93%
and 54.62%, respectively. Similar results of Localization can be found in Fig. 3-
(b). This validates the effectiveness of our motivation for multi-modality fusion.
Besides, to validate the effectiveness of model design, we also ablate the model
structure as: 1) w/o localization: directly segment the infarct using the whole
multi-modal feature xf , 2) w/o MOE: use only one set of cross attention and
FFN, 3) w/o Mamba: discard the mamba-based feature extraction and 4) w/o
CE: directly use the collateral maps as condition. As can be seen in Fig. 3-
(c)/(d), all the ablation settings lead to performance degradation. The above
results validate the effectiveness of the model designs for our CCGM method.
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5 Conclusion

In this paper, we have proposed a collateral circulation guided multi-modality
fusion network for postoperative infarct prediction. Firstly, we established the
first brain CTP dataset with collateral circulation status for postoperative infarct
prediction. Based on our dataset, we obtained several findings about the strong
correlation of collateral maps and brain infarcts. Motivated by the findings,
we proposed a multi-modality fusion module to fuse the CTP scans and the
derived images based on the developed Mamba structure and mixture-of-experts
mechanism, as well as a collateral prior guided infarct prediction module for
localization and segmentation. Finally, the extensive experiments compared with
14 state-of-the-art methods validate the effectiveness our CCGM method.

Disclosure of Interests. This work was supported by NSFC under Grants 62401027,
62206011 and 62450131, and Beijing Natural Science Foundation under Grant L223021,
and the Fundamental Research Funds for the Central Universities.
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