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Abstract. Motion artifacts degrade MR image quality affecting clini-
cal diagnoses. Although deep learning-based motion artifact correction
(MAC) methods show promise, they are limited by the lack of real paired
motion-corrupted and motion-free images. We propose a novel frequency-
assisted artifact disentanglement learning framework for MAC of MR
images. Our approach integrates a frequency-decomposed motion cor-
rection network (FDMC-Net) for content-artifact disentanglement over
the real unpaired data, coupled with confidence-guided knowledge distil-
lation using simulated paired data. Specifically, considering that motion
artifacts are primarily caused by high-frequency k-space misalignment,
FDMC-Net decomposes motion-corrupted MR images into low-frequency
and high-frequency components and then employs dedicated encoders to
disentangle content and artifact features. FDMC-Net is trained by unsu-
pervised cycle-consistent adversarial loss over realistic unpaired data, and
confidence-guided knowledge distillation loss by distilling a teacher model
trained on simulated paired data. Experiments demonstrate its state-of-
the-art performance, with ablation studies confirming the effectiveness
of frequency-assisted disentanglement and confidence-guided distillation.

Keywords: Motion artifact correction · Frequency-assisted artifact dis-
entanglement · Confidence-guided knowledge distillation.

1 Introduction

Magnetic resonance imaging (MRI) is a non-invasive, radiation-free technique
providing high-resolution images of soft tissues. However, the prolonged acqui-
sition time and involuntary patient movement during scanning often introduce
various motion artifacts, such as ghosting and blurring [15]. These artifacts sig-
nificantly degrade image quality, potentially obscuring critical diagnostic infor-
mation and negatively impacting clinical decision-making for radiologists.

To mitigate motion artifacts, various prospective and retrospective methods
have been proposed. Prospective methods utilize external tracking devices or
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navigators for real-time motion estimation, but they require additional hard-
ware and scanner modifications [8]. In contrast, retrospective artifact correction
(RAC) applies motion correction during image reconstruction after data acqui-
sition, eliminating the need for extra hardware [15]. While CNN-based RAC
methods [2, 5, 6, 9, 10, 14, 16–18] have shown promise in removing motion arti-
fact, their supervised training requires paired motion-corrupted and motion-free
images, which are difficult to obtain in practice. Simulated artifacts provide an
alternative but may not fully replicate real-world motion distortions.

To address the lack of real-paired data, many unsupervised generative net-
works have been proposed using unpaired data [4, 13, 20–22]. The CycleGAN [22]
architecture consists of two generators: one corrupts a motion-free image, while
the other corrects an unpaired motion-corrupted image using cycle consistency
loss, along with adversarial loss distinguishing between synthetic and real im-
ages. Recently, several methods have been proposed to enhance CycleGAN for
motion correction [4, 11, 20]. Liu et al. [11] introduced DUNCAN, a disentan-
gled unsupervised cycle-consistent adversarial network, to separate content and
artifacts. Multi-Net [7] is a multi-task framework for motion artifact correction
(MAC) and tissue segmentation. DCGAN-MS [4] uses multi-mask k-space sub-
sampling with CycleGAN to reduce the complexity of motion artifact. Despite
promise, they still struggle with handling complex real-world artifacts and pre-
serving anatomical structures.

In this paper, we propose a frequency-assisted artifact disentanglement frame-
work for MR image motion artifact correction (MAC). Our approach integrates
a frequency-decomposed motion correction network (FDMC-Net) for content-
artifact disentanglement in low-frequency (LF) and high-frequency (HF) com-
ponents and employs confidence-guided knowledge distillation for synthetic-to-
real knowledge transfer. Specifically, FDMC-Net employs a learnable frequency
decoupling module to decompose motion-corrupted MR images into HF and LF
components, leveraging the prior knowledge that motion artifacts predominantly
arise from high-frequency k-space misalignments. These LF and HF components
are then processed by specialized encoders to disentangle anatomical content
from motion artifacts, enabling targeted suppression of artifacts while preserv-
ing structural fidelity. Finally, the LF and HF content features are fused to re-
construct motion-free MR images. To overcome the lack of real paired data,
we combine cycle-consistent adversarial learning on real unpaired data with
confidence-guided knowledge distillation (CGKD) using simulated pseudo-pairs.
In CGKD, a teacher model trained on simulated data generates pseudo-labels,
while a confidence map prioritizes reliable regions to guide the FDMC-Net dur-
ing distillation. Experiments conducted on simulated and real motion-corrupted
MRI datasets show that our method outperforms state-of-the-art approaches.

2 General Approach and Network Architecture

Given an unpaired motion-free MR image Imf and a motion-corrupted MR im-
age Imc, we propose a frequency-decomposed motion correction network(FDMC-



Frequency-Decomposed Motion Correction Network 3

(a) The Architecture of FDMC-Net (Student Model) 
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Fig. 1: (a) The architecture of the frequency-decomposed motion correction net-
work (FDMC-Net). (b) The teacher model pre-trained on simulated paired data
for confidence-guided knowledge distillation (CGKD).

Net) for correcting motion artifact in MRI. As shown in Fig. 1(a), FDMC-
Net decomposes motion-corrupted image Imc into low-frequency (LF) and high-
frequency (HF) components, then disentangles artifact and content features sep-
arately within both LF and HF components using specialized encoders. The LF
and HF content features are fused to reconstruct motion-free images, while con-
tent features from the motion-free image Imf are combined with artifact features
from Imc to generate motion-corrupted images.

2.1 Network Architecture

The architecture of FDMC-Net is shown in Fig. 1(a), comprising key components
such as: frequency decomposed module M , content encoders (i.e., El

c, Eh
c ), arti-

fact encoders (i.e., El
a, Eh

a ), and decoders (i.e., Gmf , Gmc). Specifically, given an
unpaired motion-corrupted image Imc and a motion-free image Imf , FDMC-Net
first decomposes both images into their corresponding low-frequency (LF) and
high-frequency (HF) components using the frequency decomposed module M :

F l
mc, F

h
mc = M(Imc), F l

mf , F
h
mf = M(Imf ), (1)

where F l
mc and Fh

mc are the LF and HF components of the features from Imc,
and F l

mf and Fh
mf are the LF and HF components of the features from Imf .

For the LF and HF components of the motion-corrupted MR image Imc, we
use the LF and HF content encoders (i.e., El

c, Eh
c ), and LF and HF artifact

encoders (i.e., El
a, Eh

a ) to encode and disentangle the corresponding content
features (i.e., Cl

mc, Ch
mc) and artifact features (i.e., Al

mc, Ah
mc), respectively:

Cl
mc = El

c(F
l
mc), Al

mc = El
a(F

l
mc), Ch

mc = Eh
c (F

h
mc), Ah

mc = Eh
a (F

h
mc).

(2)
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Similarly, for the LF and HF components of motion-free image Imf , we only
apply the LF and HF content encoders El

c and Eh
c to extract the content features:

Cl
mf = El

c(F
l
mf ), Ch

mf = Eh
c (F

h
mf ). (3)

Next, the LF and HF content features of both the motion-corrupted image
Imc and the motion-free image Imf are passed to the motion-free decoder Gmf ,
which reconstructs the corresponding motion-free MR images:

Imc→mf = Gmf (C
l
mc, C

h
mc), Ĩmf = Gmf (C

l
mf , C

h
mf ), (4)

where Imc→mf is the reconstructed motion-free version of Imc, and Ĩmf is the
self-reconstructed motion-free image of Imf . Conversely, the LF and HF artifact
features are combined with the LF and HF content features to reconstruct the
motion-corrupted MR images:

Ĩmc = Gmc(C
l
mc, C

h
mc, A

l
mc, A

h
mc), Imf→mc = Gmc(C

l
mf , C

h
mf , A

l
mc, A

h
mc),

(5)
where Imf→mc is a synthesized motion-corrupted image, combining artifacts
from Imc and content from Imf . Ĩmc is the self-reconstructed image of Imc.

Furthermore, FDMC-Net incorporates a cycle consistency structure to ensure
reversible transformations between motion-free and motion-corrupted images.
As shown in the right side of Fig. 1(a), we apply the frequency decomposition
and content-artifact disentanglement to the generated motion-corrupted image
Imf→mc and motion-free image Imc→mf , and then decode them to reconstruct
motion-free image Îmf and motion-corrupted image Îmc.
Frequency Decomposed Module M . This module M is designed to de-
compose both motion-free and motion-corrupted MR images into LF compo-
nents and HF components by using dynamically gated learnable filters for each
spatial location. Specifically, a convolution block B, consisting of two convo-
lutional layers with ReLU activation, is applied to extract shallow features
Fmc=B(Imc)∈RH×W×C . Then, a gated low-pass filter Klp is learned by

Klp = φ(F̂mc ⊙ σ(Conv1×1(F̂mc))), F̂mc = Conv1×1(Fmc), (6)

where Klp ∈ RH×W×k2

, with k = 3 representing the kernel size of the learned
filter. Conv1×1 is a 1 × 1 convolution layer, and σ is a Sigmoid operation. φ is
a Softmax operation that ensures the generated filter is a low-pass filter [23].
The low-pass filter is then applied to the shallow features Fmc to obtain the
low-frequency components F l

mc and high-frequency components Fh
mc:

F l
mc(i, j) =

∑
u

∑
v

K̄lp(i, j, u, v)Fmc(i+ u, j + v), Fh
mc = Fmc − F l

mc, (7)

where K̄lp is the reshaped filter of Klp, i and j represent the spatial coordinates,
and u, v ∈ {−1, 0, 1} denote the surrounding locations.
Encoder. The encoder consists of four subnetworks: a LF content encoder El

c,
a LF artifact encoder El

a, a HF content encoder Eh
c , and a HF artifact encoder
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Eh
a . These encoders share the same architecture and network parameters settings

used in the SOTA unsupervised MAC method, DCGAN-MS [4].
Decoder. The decoder comprises two subnetworks: a motion-free decoder Gmf

and a motion-corrupted decoder Gmc. Except using 1×1 convolutional layers
with varying channel numbers to match the channel dimensions, the remaining
architecture and network parameter settings follow DCGAN-MS [4].

3 Training Method

To ensure that the outputs of FDMC-Net align with the desired MR images for
effective content-artifact disentanglement, we design two loss functions to train
the FDMC-Net, as shown in Fig. 1. First, a cycle-consistency adversarial loss
Ldisc is applied using real unpaired data. To improve reconstruction accuracy,
we introduce a confidence-guided knowledge distillation loss Ldist, which uses
confidence-weighted pseudo-labels from a teacher model trained on simulated
paired data to guide FDMC-Net in reconstructing the motion-free MR image
Imc→mf . The total loss function is formulated as:

Ltotal = Ldisc + λdistLdist, (8)

where λdist controls the weight of the confidence-guided distillation loss, set to
10 empirically. The influence of different λdist values is evaluated in Sec. 4.5.

3.1 Cycle-consistency Adversarial Training Loss

The cycle-consistency adversarial training loss consists of three components in-
cluding adversarial loss Ladv, identity loss Lidt, and cycle-consistency loss Lcyc:

Ldisc = Ladv + λidtLidt + λcycLcyc, (9)

where λidt and λcyc are set to 20 as in paper [4].
Adversarial Loss. Since no real paired motion-free image Imf and motion-
corrupted image Imc are provided, we employ discriminator Dmc and Dmf to
distinguish real motion-corrupted images and motion-free images from generated
ones. The adversarial loss Ladv is defined as follows:

Ladv = E[logDmc(Imc)] + E[1− logDmc(Imf→mc)]

+ E[logDmf (Imf )] + E[1− logDmf (Imc→mf )].
(10)

Identity Loss. The identity loss Lidt is designed to enforce consistency between
the self-reconstructed image and input image: Lidt=∥Ĩmf−Imf∥1+∥Ĩmc−Imc∥1.
Cycle-consistency Loss. The cycle consistency loss is introduced to ensure
the consistency between the MR image reconstructed by cyclic transformation
and the input MR image: Lcyc = ∥Îmf − Imf∥1 + ∥Îmc − Imc∥1.
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3.2 Confidence-guided Knowledge Distillation Training Loss

We further outline the teacher model training on synthetic paired data, and
present the derived confidence-guided knowledge distillation loss.
Supervised Training on Synthetic Paired Data. The teacher model is
trained with supervised learning on synthetic paired data, where motion-corrupted
images are generated using the forward model Isim = MFTθImf used in [1, 3,
18]. The teacher learns to map these motion-corrupted images Isim to their
corresponding motion-free versions Imf . The L1 loss minimizes the difference
between predictions and ground truth, allowing the teacher model to generate
pseudo-labels for real unpaired motion-corrupted data.
Architecture of Teacher Network. The teacher model T consist of an en-
coder E , a dynamic mixture-of-experts module M, and a decoder D. The en-
coder has three convolution blocks and four residual blocks with two downsam-
pling layers. The decoder comprises four residual blocks and three convolution
blocks with two upsampling layers. The dynamic mixture-of-experts module M
leverages Gumbel-Softmax for stochastic expert selection, enabling differentiable
probabilistic routing based on input features:

M(F ) =
∑N

i=1
πi(F )Ri(F ),

π≜ [π1(F ), · · · , πN (F )] =GumbelSoftmax(FC(GMP(F )+GAP(F ))),
(11)

where GMP and GAP denote global max and average poolings. FC is a fully
connected layer, and πi is the weight of expert i. Ri is the expert network i,
which consists of two convolutional layers and a ReLU activation. The teacher
model is summarized as: yps = D ◦M ◦ E(Imc).
Confidence-guided Knowledge Distillation. Due to the domain gap be-
tween synthetic and real data, pseudo-labels generated by the teacher model
may be inaccurate, affecting FDMC-Net training. To address this, we introduce
confidence-guided knowledge distillation loss. Specifically, M uses stochastic ex-
pert selection in Eqn. (11), which can generate T pseudo-labels (e.g., y1ps, · · · ,
yTps) for each real unpaired motion-corrupted image Imc by running the teacher
model T times. We then compute the pixel-wise mean and variance of these
pseudo-labels: ymean

ps = 1
T

∑T
i=1 y

i
ps, y

var
ps = 1

T

∑T
i=1

(
yips − ymean

ps

)2. Next, we de-
fine the pixel-wise confidence map wps as wps = 1 − Sigmoid

(
yvarps /ρ

)
, where ρ

is a hyper-parameter set empirically as 0.0001. This confidence map reflects the
uncertainty in the pseudo-labels, allowing the model to focus more on reliable
regions during training. Finally, we define the confidence-guided distillation loss
between the generated motion-free MR image Imc→mf of FDMC-Net and the
averaged pseudo-labels ymean

ps , weighted by the confidence map wps:

Ldist =
∥∥wps ⊙ Imc→mf − wps ⊙ ymean

ps

∥∥
1
. (12)

4 Experiments

Dataset. We evaluate our method on the MR-ART dataset, which contains
T1-weighted 3D structural MRI images from 148 healthy adults, provided by
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Table 1: Quantitative comparison of different methods on MR-ART dataset un-
der simulated motion(SM1 and SM2) and real motion(RM1 and RM2).

Methods SM1 SM2 RM1 RM2
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Corrupted 30.85 0.8523 25.76 0.8795 30.80 0.9185 30.02 0.8756
CycleGAN 29.32 0.9295 25.83 0.8729 29.58 0.9041 28.99 0.8634
DUNCAN 31.89 0.9542 25.96 0.8745 31.17 0.9526 30.12 0.9390

UDDN 32.02 0.9547 26.05 0.8746 31.43 0.9533 30.57 0.9426
UNAEN 31.65 0.9536 25.86 0.8731 31.03 0.9522 30.16 0.9391

DCGAN-MS 32.54 0.9578 26.44 0.8762 31.99 0.9546 31.03 0.9457
Ours 33.98 0.9713 27.63 0.8814 33.02 0.9632 32.26 0.9569

(a) GT (b) Corrupted (c) CycleGAN (d) DUNCAN (e) UDDN (f) UNAEN (g)  DCGAN-MS (h) Ours

33.56/0.96832.19/0.97130.26/0.910 26.86/0.921 31.23/0.934 34.47/0.969 35.34/0.975

28.89/0.845 30.55/0.892 32.55/0.956 33.31/0.956 34.59/0.97232.59/0.934 29.99/0.937

S
M

1
R

M
2

Fig. 2: Qualitative comparison of different methods on SM1 and RM2.

OpenNeuro [12]. The data is acquired using a 3T MRI scanner with the following
parameters: TE = 3 ms, TR = 2300 ms, flip angle = 9°, and FOV = 256 ×
256 mm. The dataset is split into a training set with 108 subjects and a test
set with 40 subjects. Each subject has a motion-free data, two real motion-
corrupted data (moderate real motion (RM1) and heavy real motion (RM2)),
and two simulated motion-corrupted data (SM1 and SM2). Specifically, SM1
(“pitch15dur2p5nnods10”) simulates 10 nods with fixed 15° pitch rotation. SM2
(“rot0to15nnods5”) simulates 5 nods with random 0-15° rotation across the pitch,
yaw, and roll axis. For training, we use motion-corrupted data from the first 50
subjects and motion-free data from the last 50 subjects to ensure unpaired data.
In addition, SyN registration by ANTs is applied to roughly align each pair of
motion-free and real motion-corrupted data.
Implementation Details. We implement our model by PyTorch, and train it
on an NVIDIA RTX 3090 GPU for 50 epochs using the Adam with a learning
rate of 1× 10−4 and a batch size of 1. We take PSNR and SSIM [19] as metrics.
Performance Evaluation. We compare the FDMC-Net with state-of-the-art
methods, including CycleGAN [22], DUNCAN [11], UDDN [20], UNAEN [21],
and DCGAN-MS [4]. The motion-corrupted image is denoted as “Corrupted”. In
Table 1, we show the quantitative results of different methods on simulated data
(SM1, SM2) and real data (RM1, RM2) with different motion severities. While
most methods improve reconstruction over “Corrupted”, our approach consis-
tently achieves the best performance, attributed to precise content-artifact disen-
tanglement and knowledge transfer from the teacher model trained on simulated
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Table 2: The ablation study of the
key components (i.e., FDM and
CGKD) of our FDMC-Net on SM1.

Methods PSNR SSIM
Baseline 31.78 0.9534

w/o CGKD 33.03 0.9632
Ours (wps = 1) 33.36 0.9650

Ours 33.98 0.9713
Fig. 3: T-SNE visualization of
features in Eqn.(2) and Eqn.(3).

Table 3: Effect of CGKD on SM1.
Methods PSNR SSIM
λdist = 1 32.85 0.9620
λdist = 5 33.57 0.9672
λdist = 10 33.98 0.9713
λdist = 20 33.68 0.9679

Table 4: Effect of T on SM1.
Methods PSNR SSIM
T = 2 33.59 0.9683
T = 4 33.98 0.9713
T = 6 33.73 0.9690
T = 8 33.37 0.9661

data. Figure 2 further validates the superiority of our method, showing the low-
est reconstruction error and the best recovery of fine image details. Additionally,
the t-SNE visualization in Fig. 3 confirms effective content-artifact disentangle-
ment, with well-separated content and artifact features. Notably, the LF content
features of motion-free and motion-corrupted images exhibit substantial overlap,
indicating that LF content remains stable despite motion artifacts.

Effectiveness of Key Components. We evaluate the effectiveness of key com-
ponents, including frequency decomposed module (FDM) and confidence-guided
knowledge distillation (CGKD), on SM1. In Table 2, (A) “Baseline” refers to
FDMC-Net without FDM and CGKD; (B) “w/o CGKD” indicates FDMC-Net
without CGKD; (C) “Ours (wps = 1)” represents FDMC-Net with a single
pseudo-label generated by the teacher model; (D) “Ours” is our full FDMC-Net
with both FDM and CGKD. As shown in Table 2, our method (i.e., “Ours”) out-
performs all variants, demonstrating the effectiveness of both FDM and CGKD.
Additionally, by using the confidence map in Eqn. (12), our method improves
the reconstruction accuracy compared to “Ours (wps = 1)”.

Effect of CGKD. Table 3 shows the effect of the confidence-guided knowledge
distillation loss in Eqn. (8) by varying λdist. Our method achieves the best when
λdist = 10, and consistently better than competitors when λdist = 1, 5, 10, 20.

Effect of Number of Generated Pseudo-labels. Table 4 evaluates the effect
of the number of pseudo-labels T generated by the teacher model on FDMC-Net
training on SM1. From these results, our method achieves the best performance
at T = 4, and consistently outperforms the competitors shown in Table 4.
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5 Conclusion

This paper introduced a novel frequency-assisted artifact disentanglement learn-
ing framework to correct the MR image motion artifacts. It is based on a fre-
quency decomposed motion correction network (FDMC-Net) for content-artifact
disentanglement on real unpaired data and additionally trained by confidence-
guided knowledge distillation on simulated paired data. Experiments on sim-
ulated and real datasets show the superiority of the proposed FDMC-Net. In
future, we will apply the method to more real datasets, e.g., abdominal dataset.
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