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Abstract. Alzheimer’s disease (AD) diagnosis faces the challenge of
capturing complex patterns of subtle structural and functional changes
in neuroimaging and the underutilization of clinical prior knowledge.
Current deep learning methods primarily focus on structural magnetic
resonance imaging (sMRI) analysis, often overlooking the critical dis-
ease concepts that clinicians rely on. To address this limitation, we pro-
pose a Prior-guided Prototype Aggregation Learning (PPAL) framework.
This framework leverages structured prompts to large language mod-
els (LLMs) to extract disease-related anatomical descriptions as clinical
prior knowledge and progressively aggregates the visual features of AD
and cognitively normal (CN) individuals, bridging the semantic gap be-
tween sMRI features and LLM-derived clinical concepts to construct cat-
egory prototype representations. Meanwhile, we design a slice selection
and compression module that adaptively learns the importance of differ-
ent slices, prioritizing those most critical for AD diagnosis. Ultimately,
AD diagnosis is achieved by computing the semantic similarity between
MRI slice features and the category prototypes. Experimental results
demonstrate that, compared to state-of-the-art 2D slice-based methods,
incorporating clinical prior knowledge not only enhances the identifica-
tion of pathological regions but also shows significant advantages in the
zero-shot mild cognitive impairment (MCI) conversion task. The code is
available at: https://github.com/diaoyq121/PPAL.

Keywords: Alzheimer’s disease - Aggregation attention - Semantic sim-
ilarity.

1 Introduction

Alzheimer’s disease (AD) is a prevalent neurodegenerative disorder marked by
memory loss and cognitive decline, ultimately leading to significant impairment



2 Diao et al.

in daily activities [I8]. As an irreversible condition with no definitive cure,
early diagnosis is essential for timely intervention and effective disease man-
agement [I6)25]. In recent years, deep learning methods have significantly ad-
vanced AD diagnosis by extracting subtle brain morphology and anatomical fea-
tures from structural magnetic resonance imaging (sMRI) scans [2I3]. Common
analytical approaches include voxel-level, patch-level, and slice-level analysis.
Voxel-level methods employ 3D convolutional neural networks (CNNs) to extract
whole-brain features, incorporating attention mechanisms [7J5] and multi-scale
analysis [20] to improve detection of pathological regions. Patch-level methods
divide sMRI scans into smaller patches for localized feature learning [24], often
combining multi-instance learning with attention mechanisms [I7] to enhance
performance. However, due to their reliance on 3D CNNs, both voxel- and patch-
level methods are computationally intensive and tend to overemphasize local fea-
tures. In contrast, slice-level methods decompose 3D MR images into 2D slices,
enabling more efficient transfer learning and improved interpretability [I5/10].

However, existing methods have not fully leveraged the external knowledge
from textual priors. This knowledge enriches semantic understanding, aids in
deep feature clustering [8], and improves diagnostic accuracy. In natural scenes,
CLIP [12] performs text-image alignment using a dual-tower architecture with
contrastive learning, excelling in tasks such as classification [6I21], segmenta-
tion [913], and anomaly detection [19]. Inspired by this, vision-language models
(VLMs) like ViLa-MIL [14], BiomedCLIP [22], and MI-Zero [II] have achieved
excellent results in various medical diagnosis tasks. Additionally, Fang et al. [4]
addressed the scarcity of image-text pairs by combining large language mod-
els (LLMs) with medical images through refined prompts. However, the use of
image-text semantic similarity in AD diagnosis is still rare, and the domain
gap between natural and medical images limits the effectiveness of CLIP-based
methods. To address these challenges, we propose a Prior-guided Prototype Ag-
gregation Learning (PPAL) framework, which progressively aggregates image
category representations using textual priors. This approach refines text embed-
dings while bridging the gap between image and text feature representations,
providing a more interpretable and reliable framework for AD diagnosis.

The main contributions of our work are as follows: 1) We propose a guidance
mechanism based on external textual concept knowledge to progressively aggre-
gate visual features, while dynamically optimizing text prompt expressions by
incorporating contextual information, thereby enhancing the semantic alignment
between visual and textual modalities; 2) We employ a Slice Selection and Com-
pression (SSC) module to model the importance of slices, enabling the model
to focus on critical slices and achieve dynamic fusion; 3) We designed a disease
knowledge-guided network framework for AD diagnosis, which enhances both
model performance and interpretability by incorporating external knowledge.
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2 Method

2.1 Overall

Our core goal is to integrate medical prior knowledge with image features for AD
diagnosis via semantic similarity computation. As shown in Figure [T} we first use
a LLM to extract disease-related concepts through a QA approach. Then, the
Slice Selection and Compression (SSC) network assigns importance scores
to MRI slices, selecting and aggregating key slices. The Text-Aggregated Vi-
sual (TAV) representation network iteratively fuse visual features, reducing se-
mantic gaps and enriching textual descriptions. Finally, AD diagnosis is achieved
by computing the semantic similarity between image features and the aggregated
text prototype embeddings.
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Fig. 1. Pipeline of the proposed PPAL framework. (a) Extract disease-related con-
cepts through a question-and-answer mechanism. (b) Select and integrate key slice
information to enhance critical representations. (c) Progressively aggregate visual fea-
tures using text embeddings to obtain more refined prototype feature representations.
(d) Classify based on semantic similarity measurements.

2.2 Slice selection and compression

In Alzheimer’s disease diagnosis, clinicians focus on key slices with diagnostic
value. Building on this, our study proposes a critical slice selection method that
integrates the most relevant slices related to pathological features. We use a
shared convolutional encoder based on the pre-trained VGG16 architecture. To
ensure compatibility, the original slices are replicated along the channel dimen-
sion and resized to 224x224 pixels. The encoder extracts features, followed by



4 Diao et al.

global average pooling to generate a feature embedding for each slice:
fi = GAP (Eshare (:Bﬁ ecnn)) (1>

Where x; € REXH*W and f, are the i-th slice and the corresponding feature em-
bedding, respectively, and 6.,, represents the parameters of the shared encoder
FEshare- As shown in Figure [2] to select the important slices, the slice embed-
dings are concatenated to obtain a feature representation f, € RV*? and then a
multi-head self-attention mechanism is applied to learn the correlations between
different slices: _

fo.=MultiHead (Q., K., V.) (2)

where Q, = fe x W5, K. =V, .= f.x W{, and W, ° € R4 W¢ € R4
denote the weight matrix for the linear transformation. Subsequently, the output
of the attention layer is added to the original input, and layer normalization is
applied to obtain a new feature representation f.,. Following this, slice attention
(SA) is applied to dynamically adjust and integrate information from multiple
slices, considering both global context and slice relevance. This mechanism en-
sures that the extracted features are selectively focused on AD-related content.
The process can be formally described as follows:

exp {W'br (tanh (W, f1;) © sign (Wu_f’m))}
Z?; exp {WbT (tanh (valcj) © sign (Wuflcj)) }

oy =

(3)

exp { (mean (f/m)) }
Bi = o (4)
> exp { (mean (£7:))}
N
FZZSifLiaSiZOéi+ﬂi (5)

Where W, € R4 W, € R4 and W, € R*! are trainable weight matri-
ces. tanh(-) and sign(-) are activation functions, with s; representing the score
of the i-th slice. We dynamically integrate the information from each slice using
the scores s; to obtain F'. Subsequently, a classifier is applied to map the inte-
grated features into the classification space for coarse classification, yielding the
probabilities for each category:

9¢ = classfier (F),d; = softmaz (§°) (6)

Based on the class probabilities d;, we divide the features into two categories:
foa=do©F and f_, =d; ©F, which are used to enhance the text features for
each category. We employ a binary cross-entropy loss function for regularization:

N
Lo= Loee (§9) = 0 D I o8 () + (1~ y:) log (1 —35)]  (7)
i=1
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Fig. 2. Slice selection and compression
module.

Fig. 3. Text-aggregated visual module.

2.3 Text-aggregated visual representation

Although image-text alignment has been achieved through contrastive learning
in natural scenes, directly applying the CLIP model to medical scenarios still
faces the challenge of semantic misalignment between image and text, which af-
fects diagnostic performance. To address this challenge, we leverage text-based
prior knowledge to progressively aggregate visual features, thus obtaining pro-
totype embeddings for AD and CN and alleviating the semantic shift problem.
To extract AD-related knowledge concepts, we refer to prior research and adopt
the GPT-4 model, using a question-and-answer approach to generate feature
descriptions related to AD and CN. To better transfer CLIP’s knowledge to the
AD diagnosis domain, we introduce learnable vectors as supplementary prompts.
These learnable prompts, p,;, are concatenated with the prompt text, v, form-
ing a new input [23], which is then fed into the CLIP text encoder to generate
text feature embeddings for the two categories. Next, an adapter is used to map
these embeddings to the visual semantic space, enabling the conversion from
text space to visual space. Finally, we introduce a progressive text aggregation
method to better learn and enhance the text semantic information.

Specifically, we introduce a progressive text aggregation method to better
capture and enhance the semantic information from the text. As shown in Fig-
ure [3] we set up two learnable prototype features P, which use prototype
aggregation attention to separately learn the information from the AD and CN
category features. These prototype features are then fused with the text embed-
dings, enriching the semantic information and mitigating the significant semantic
gap between the two types of features:

P Kv
P!, = Norm (softmax <“’lf[‘ld5) le> + P, (cIs=ad,cn)  (8)

T\, =T, + P (9)

cls cls

Subsequently, the text aggregation attention mechanism is used to aggregate
the discriminative information from the AD and CN classes, and a feed-forward
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network (FFN) layer is employed to update the prototypes, generating two text
prototype features with stronger discriminative ability:

L Qu. Ky v = !
Tiy, = Norm (softmax (=242 ) Vi, ) T, TG, = FFN (Tcls) (10)
We perform three iterative operations to progressively aggregate the visual
representations, resulting in a discriminative prototype feature embedding Tlcls.
Subsequently, the semantic similarity between the aggregated slice visual embed-
ding F and T',, is computed to obtain the probabilities for different categories:
s exp(cos (F,T%))) (11)
Is — C
“r S exp (cos (F,TT))

S

Subsequently, L = Lyce (g}fls, y) is used as a constraint for fine-grained classifi-

cation. The final result is obtained by combining the coarse classification results
with the fine-grained matching results. The total loss used for model training is:

Eoveall = Ef + Ec (12)

3 Experiments and Results

Datasets and Evaluation metrics To assess the performance of our pro-
posed algorithm, we used the "ADNI1: Complete 1Yr 1.5T" dataset from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) benchmark. This dataset
consists of 639 participants, each of whom underwent baseline screening and
follow-up MRI scans at 6 and 12 months, acquired with a 1.5 Tesla MRI scanner.
Participants with MCI were further categorized into progressive MCI (pMCI) or
stable MCI (sMCI) groups, depending on whether they converted to Alzheimer’s
disease within 36 months. The dataset includes 586 cognitively normal (CN),
474 AD, 162 pMCI, and 154 sMCI cases. The MRI images were registered
to the MNI152 template space using the SyN algorithm in ANTs, followed by
standard preprocessing steps: (1) bias field correction with the N4ITK method,
(2) affine registration, and (3) skull stripping. We evaluated the algorithm on
two binary classification tasks - AD vs CN and sMCI vs pMCI — using five-
fold cross-validation. Performance was measured using four metrics: accuracy
(ACC), specificity (SPE), sensitivity (SEN), and Matthews correlation coeffi-
cient (MCC). Notably, MCC is considered a more balanced and informative
metric for binary classification, especially in the presence of class imbalance.
Implementation Details Our method was implemented using PyTorch and
executed on an Intel(R) Xeon(R) CPU and NVIDIA GeForce RTX 4090 GPU.
For a fair comparison, all methods in our experiments, including the proposed
PPAL, were built on the VGG16 backbone. To enhance model generalization and
robustness, we applied a series of random transformations to the MRI images
during training. The model was trained using the Adam optimizer with an initial
learning rate of le-4 and a decay rate of 0.0001. We set the batch size to 4 and
trained for a maximum of 100 epochs, employing an early stopping strategy to
prevent overfitting.
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3.1 Comparison to state-of-the-art methods
Table 1. Results of 5-fold cross-validation on the ADNI dataset for AD diagnosis and

MCI conversion prediction tasks. The gray area represents the results under zero-shot
classification.

Networks AD vs CN sMCI vs pMCI
ACC SPE SEN MCC| ACC SPE SEN MCC
Attention Transformer [I] 82.60 91.40 71.70 65.10 | 62.30 66.50 48.73 23.80
AwareNet [15] 83.32 87.5 77.80 65.90| 48.41 77.40 25.80 3.90
Majority Voting 80.40 89.70 68.90 60.50| 61.40 60.10 62.90 22.90
CLIP [12] 78.44 75.31 80.98 56.36| 63.72 58.90 68.83 27.83
ViLa-MIL Low [6] 79.19 66.53 89.94 58.16| 63.09 56.44 70.13 26.79
CoOP [23] 82.86 79.29 84.72 64.13| 62.46 60.74 64.29 25.02
AXIAL [10] 83.22 75.73 89.3 66.06| 64.67 50.30 79.87 31.49
Ours 85.38 82.42 87.78 70.39| 67.19 65.64 68.83 34.47

AD vs CN We compared our model with current state-of-the-art models based
on 2D slice attention, including Attention Transformer [I], AwareNet [15], Major-
ity Voting, AXTAL [I0], and contrastive learning-based methods such as CLIP [12],
ViLa-MIL Low [6] and CoOP [23]. As shown in Table [1} our method achieved
the best results in the AD vs CN task, with ACC and MCC reaching 85.38%
and 70.39%, respectively, outperforming AXIAL by 2.16% and 4.33%, demon-
strating the effectiveness of our method in AD diagnosis. Additionally, with SPE
at 82.42% and SEN at 87.78%, our method demonstrates strong diagnostic ca-
pability for both positive and negative samples.

sMCI vs pMCI In the MCI conversion task, diagnosing classification is more
challenging due to the similar MRI characteristics between sMCI and pMCI.
Specifically, to assess the model’s zero-shot capability, we directly applied the
weights trained on the AD vs. CN classification task to the MCI conversion pre-
diction task without any additional fine-tuning. The results, presented in Table
show that the ACC and MCC reached 67.19% and 34.47%, respectively, out-
performing both training-based and untrained methods. These findings highlight
the potential of our approach in zero-shot transfer learning.

Interpretability analysis To enhance the interpretability of the model, we
utilized explainable artificial intelligence (XAI) methods to visualize slice weight
scores and key regions of interest, as shown in Figure[d The visualization results
indicate that our method can focus on critical slice information and primarily
attend to key regions such as the hippocampus, parahippocampal gyrus, and
amygdala. Table [2] presents the top five regions the model focuses on, which are
consistent with the visualization results and clinical observations. Additionally,
these regions align with the keywords specified in the text prompts, suggesting
that the text prompts effectively guide the model to focus on regions relevant to
Alzheimer’s disease diagnosis. The attention map in Figure [5| further illustrates
the model’s ability to attend to important AD-related regions.
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Sagittal

(a) ) Fig.5. GradCAM++ visualizations of

four randomly selected slices per plane for
Fig. 4. (a) Slice attention weight distri- our model.

bution across three planes. (b) Visual-
ization of model attention on ROI .

Table 2. Top 5 ROL V; and P». Table 3. The ablation experiments con-
represent the overlap volume and ducted on TAV and SSC.
overlap percentage of a specific re-
ion, respectively. AD vs CN
i Py Methods  —5c—5pE sEN MCO
Brain Area Vi P, Baseline 82.84 84.52 81.49 65.70
Hippocampus - right 1571 0.3348 +TAV 83.60 78.87 87.43 66.75
Hippocampus - left 1536 0.3272 +SSC 84.44 79.70 88.29 68.47
Parahippocampal - left 730 0.2696 +SSC(w/o SA) 84.16 77.62 89.47 67.94
Parahippocampal - right 532 0.1965 PPAL(w/o L) 82.01 76.57 86.42 63.50
Amygdala - left 332 0.2012 Ours 85.38 82.42 87.78 70.39

3.2 Ablation Study

We conducted an ablation study to evaluate the contribution of each compo-
nent in our model, as shown in Table [3] Using the original VGG16 model as the
baseline, our method achieved significant improvements of 2.54% and 4.69% in
ACC and MCC, respectively. We progressively incorporated the SSC and TAV
modules, where adding either module individually improved performance, and
the best results were obtained when both modules were combined, further val-
idating their effectiveness. Notably, in the absence of slice attention, the ACC
and MCC of "Baseline+SSC" declined, highlighting the critical role of slice at-
tention in the SSC module. Additionally, using £ for coarse classification aids
in aggregating visual features through text embeddings.

4 Conclusion

This paper proposes a method for Alzheimer’s diagnosis that aggregates visual
features using external knowledge, referred to as PPAL. This method effectively
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transfers textual prior knowledge into medical image analysis. By utilizing a LLM
to acquire diagnostic knowledge, it employs a progressive aggregation strategy
to gradually integrate visual information related to the prior knowledge, achiev-
ing more refined knowledge embedding. To more efficiently extract diagnostic
information, we adopt a slice selection and compression method that focuses on
the most critical slice information and fuses them to obtain effective diagnostic
insights. Experimental results demonstrate that our method can effectively se-
lect important slices, focus on key region information, and significantly improve
the interpretability of the model.
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