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Abstract. Dynamic functional brain network analysis using rs-fMRI
has emerged as a powerful approach to understanding brain disorders.
However, current methods predominantly focus on pairwise brain re-
gion interactions, neglecting critical high-order dependencies and time-
varying communication mechanisms. To address these limitations, we
propose the Long-Range High-Order Dependency Transformer (LHD-
Former), a neurophysiologically-inspired framework that integrates mul-
tiscale long-range dependencies with time-varying connectivity patterns.
Specifically, we present a biased random walk sampling strategy with
NeuroWalk kernel-guided transfer probabilities that dynamically simu-
late multi-step information loss through a k-walk neuroadaptive factor,
modeling brain neurobiological principles such as distance-dependent in-
formation loss and state-dependent pathway modulation. This enables
the adaptive capture of the multi-scale short-range couplings and long-
range high-order dependencies corresponding to different steps across
evolving connectivity patterns. Complementing this, the time-varying
transformer co-embeds local spatial configurations via topology-aware at-
tention and global temporal dynamics through cross-window token guid-
ance, overcoming the single-domain bias of conventional graph/transformer
methods. Extensive experiments on ABIDE and ADNI datasets demon-
strate that LHDFormer outperforms state-of-the-art methods in brain
disease diagnosis. Crucially, the model identifies interpretable high-order
connectivity signatures, revealing disrupted long-range integration pat-
terns in patients that align with known neuropathological mechanisms.
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1 Introduction

Dynamic functional brain network analysis based on rs-fMRI data serves as a cor-
nerstone for decoding human brain organization and identifying pathological sig-



2 R. Xue et al.

natures in neurological disorders [1–3]. Mounting evidence highlights that time-
varying functional connectivity (FC) encodes critical information about evolving
neural coordination mechanisms underlying cognitive processes and neuropsy-
chiatric disorders. However, current dynamic functional brain network analysis
paradigms mainly focus on pairwise region-of-interest (ROI) interactions while
neglecting the long-range high-order dependencies [4–7]. This oversight funda-
mentally limits the ability to model the long-range communication mechanisms
within the brain, where high-order functional integration across distributed re-
gions dynamically coordinates complex cognitive functions [8].

Existing methods for modeling dynamic brain networks typically analyze
pairwise relationships through sliding window correlations or time-frequency co-
herence, failing to capture high-order information flow beyond immediate neigh-
bors. Though recent studies [9,10] introduce random-walk kernels to model long-
range dependencies, the designed static kernels exhibit two critical shortcomings:
1) inability to adapt to the time-varying nature of functional connectivity and
2) failure to encode neurophysiological multi-scale long-range dependency pat-
terns corresponding to different steps. These limitations underscore an urgent
need for frameworks that simultaneously address the time-varying adaptivity and
high-order dependency challenges in dynamic brain network analysis.

To address the above challenges, we propose LHDFormer–a neurophysiologi-
cally grounded framework that combines neuroadaptive long-range dependency
embedding with temporal dynamic integration. Specifically, we develop a biased
random walk sampling strategy with a time-varying NeuroWalk kernel that en-
ables dynamically regulating the precess of multi-step information propagation
to generate long-range high-order dependency embeddings. Subsequently, local
spatial dependencies within the brain and global dynamic connectivity patterns
are integrated via a time-varying transformer based on the long-range embed-
dings. The main contributions of this work are as follows:

1) We propose a novel neuroadaptive long-range dependency awareness mecha-
nism, incorporating a NeuroWalk kernel with biased random walks to guide
transfer probabilities to capture multi-scale dependency patterns. This mech-
anism enables the simultaneous encoding of short-range functional couplings
and long-range high-order dependencies within brain networks.

2) We develop a Time-Varying Transformer framework that integrates the local
spatial topologies with evolving temporal dependencies through: Topology-
aware attention preserving spatial neighborhood relationships, and Cross-
window token integration capturing global connectivity evolution.

3) Extensive experiments on ABIDE and ADNI datasets demonstrate that
LHDFormer outperforms all comparison methods. Visualization of the high-
order dependencies reveals the brain’s long-range discriminative patterns for
brain diseases, offering new perspectives on their pathological mechanisms.
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Fig. 1. The framework of the proposed LHDFormer.

2 Method

2.1 Adaptive Embedding for Long-Range High-Order Dependencies

Existing approaches primarily aggregate information from pairwise ROIs, ne-
glecting the long-range high-order dependencies among ROIs. Although Study [9]
introduced a long-range random walk kernel to address this limitation, its static
design proves inadequate for temporal data like fMRI. Specifically, the static ran-
dom walk kernel fails to discern distinct regulatory requirements across varying
walk lengths and cannot capture temporal dynamic patterns, constraining the
representational capacity of long-range embeddings. We develop a neuroadaptive
long-range dependency embedding method that incorporates a NeuroWalk ker-
nel with biased random walks to guide transfer probabilities. Through allocating
independent adaptive factors for each walking step, our method achieves differ-
entiated modulation of dependencies at varying distances, enabling the discovery
of long-range high-order functional dependencies within the brain network.

Time-Varying Factors. For fMRI data, the BOLD time series are extracted
across N ROIs for T time points. The temporal variability of functional connec-
tivity between ROIs is represented using the sliding window technique, which
segments the time series into M non-overlapping windows. The dynamic brain
network is formalized as a sequence G(t) = {V,A(t)}Mt=1, where A(t) is derived
from the PCC matrix within a temporal window of length T/M . These time-
varying adjacency matrices are thresholded as time-varying factors F(t), with
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each factor encoding inter-regional interactions during specific temporal phases,
enabling longitudinal monitoring of evolving neural coordination patterns [11].

k-Walk Neuroadaptive Factors. To capture multi-scale/multi-step long-range
dependency patterns and simulate information decay during traversals, we pro-
pose a k-walk adaptive factor allocation mechanism that independently modu-
lates information propagation intensity at different walk steps. For each random
walk step k ∈ {1, . . . ,K} at time t, step-specific adaptive factors F(t)

k are gener-
ated through learnable transformation of functional connectivity patterns:

F
(t)
k = eβ(1−k) · σ(∥ F(t) ∥F /

√
N), (1)

where β ∈ (0, 1) governs the base decay rate modeling biological signal loss,
while the Frobenius norm ∥ F(t) ∥F quantifies global connection intensity within
the window t. This dual-constraint design ensures: 1) Exponential decay eβ(1−k)

simulates neurophysiological information loss; 2) Time-aware scaling adaptively
modulates decay rates according to time-varying brain network density. The
resultant factors automatically suppress noisy propagation in low-synchrony
phases |F(t)|F → 0 while preserving salient patterns in high-coherence states,
achieving biologically plausible dynamic filtering across spatiotemporal domains.

This k-walk neuroadaptive factor design enables differentiated regulation of
biologically multi-scale dependencies: lower k-walks prioritize direct interactions,
while higher k-walks selectively retain salient long-range patterns.

NeuroWalk Long-Range Dependency Embedding. The pre-computed neu-
roadaptive factors F

(t)
k effectively represent the multi-level long-range depen-

dency patterns among ROIs corresponding to multi-steps. To encode these multi-
scale relationships with time-varying properties, we implement a biased random
walk sampling strategy with NeuroWalk kernel-guided transfer probabilities.

In conventional network theory, random walks follow Markovian transitions
where the probability of moving from node A to B depends solely on the imme-
diate network state, as defined by the transfer probability matrix P ∈ RN×N .
However, functional brain networks exhibit distinctive neurophysiological prop-
erties characterized by dynamic communication strengths between ROI pairs.
Improper handling of these time-varying interactions may disrupt the intrinsic
collaborative dynamics in brain cognitive processes. Given this fact, the transfer
probability matrix within the brain network can be fine-tuned by k-walk neu-
roadaptive factors F

(t)
k : P̂(t)

k = P ⊙ F
(t)
k . Formally, given the adjacency matrix

A(t) and its degree diagonal matrix (D(t))−1 at time t, along with the k-walk
adaptive factor F

(t)
k , we define the time-varying NeuroWalk kernel R(t,k) as:

R(t,k) = (F
(t)
k ⊙A(t))(D(t))−1. (2)

This kernel enables progressive exploration of high-order dependencies through
multi-step walks. For k-step random walks, the long-range embeddings E(t) is
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constructed through iterative aggregation:

e
(t)
i =

[
I,R(t,1),

∏2
k=1 R

(t,k), . . . ,
∏K−1

k=1 R(t,k)
]
i,i

. (3)

2.2 Time-Varying Transformer

To comprehensively model evolving neurocognitive patterns, we propose a Time-
Varying Transformer that synergistically integrates local spatial dependencies
and global dynamic connectivity patterns through dual complementary encod-
ing pathways. The composite embedding at time window t is formulated as:
X(t) = (E(t)). This framework establishes global feature representations through
dual-domain processing that simultaneously captures intra-window spatial rela-
tionships and inter-window temporal dynamics.

Local Spatial-Domain Feature Encoding. The Time-Varying Transformer
layer enhances local feature representation through a topology-aware attention
mechanism that jointly processes local composite embeddings the local compos-
ite embeddings X(t) and learnable spatial tokens h(t) at time step t:

(X(t),h(t)) → (X(t)
spa.h

(t)
spa). (4)

The topology-aware attention mechanism preserves spatial graph properties and
semantic attention patterns through the integration of graph convolution op-
erators into attention computation, allowing the obtained attention scores to
represent both functional node similarity and graph connectivity.

Q
(t)
i ,K

(t)
i , V

(t)
i = ReLU((D(t))−1/2A(t)(D(t))−1/2X(t))(WQ,WK ,WV ), (5)

X(t)
spa = Wo(∥Di=1 X

(t)
i ), X

(t)
i = softmax

(Q(t)
i (K

(t)
i )⊤√
d

)
V

(t)
i , (6)

where D is the number of attention heads, ∥ indicates concatenation.

Global Time-Varying Feature Integrating. Following spatial encoding through
l stacked layers, the temporal evolution of composite features is captured in the
token sequence {h(t)

spa}Mt=1. These encoded features across time ∥Mt=1 X
(t)
spa are

globally in the temporal domain under the guidance of token sequence ∥Mt=1 h(t)
spa

of a standard Transformer, culminating in a final X(l+1)
tem used for classification.

(∥Mt=1 X(t)
spa, ∥Mt=1 h(t)

spa) → Xtem. (7)

2.3 Readout Layer

The X
(l+1)
tem are transferred to the readout layer. The readout result is generated

by concat pooling operations and then fed into the MLP to obtain it. The whole
process is supervised with cross-entropy loss.
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Table 1. Experimental Results of the Comparison Methods.

Dataset Method ACC(%) SEN(%) SPE(%) AUC

ABIDE

STGCN [15] 65.52±2.46 62.96±7.51 67.74±5.00 0.6628±0.0243

BrainIB [16] 69.21±8.64 65.32±5.70 72.94±5.32 0.6902±0.0327

RGTNET [17] 69.75±1.41 70.30±4.71 68.87±3.84 0.7051±0.0117

MSSTAN [7] 71.40±1.49 70.35±1.80 72.55±1.83 0.7678±0.0076

ALTER [9] 71.23±2.86 71.27±3.84 71.22±2.02 0.7547±0.0207

LHDFormer 74.29±1.17 73.48±1.10 75.09±2.04 0.7978±0.0103

ADNI

STGCN [15] 62.82±4.46 65.23±5.49 60.36±4.65 0.6254±0.0582

BrainIB [16] 64.68±2.94 66.36±9.01 63.62±8.14 0.6583±0.0390

RGTNET [17] 65.75±3.23 66.32±4.28 64.54±3.15 0.6826±0.0449

MSSTAN [7] 67.88±2.84 69.38±3.83 66.40±2.73 0.7130±0.0457

ALTER [9] 68.50±1.17 69.32±2.28 67.33±2.58 0.7200±0.0181

LHDFormer 71.42±1.70 72.52±2.02 70.27±1.10 0.7347±0.0209

3 Experiments

3.1 Experimental Settings

Datasets and Preprocessing. We evaluate LHDFormer on two distinct brain
disease diagnosis tasks: 1) Autism Brain Imaging Data Exchange(ABIDE) [12]
aggregates neuroimaging data across 16 international sites, comprising 539 indi-
viduals with ASD and 573 normal controls (NCs). 2) Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) [13] represents a multicenter longitudinal study fo-
cused on enhancing therapeutic intervention assessment for MCI. In this study,
we select a subset of ADNI consisting of 125 MCI patients and 139 NCs. All
fMRI data underwent standardized preprocessing through DPARSF [14].

Compared Methods. The LHDFormer is compared with several state-of-the-
art methods, including GNN-based methods and transformer-based methods.
The codes are reproduced based on the released codes or detailed introductions.

Implement. Device: Experiments are conducted on an NVIDIA RTX 3090 GPU
using PyTorch. Data split : Stratified 5-fold cross-validation (4:1 train/test split).
Optimization: Adam with learning rate 1e-4, weight decay 1e-4. Training : 100
epochs with 16 batch size, early stopping. The final results are expressed as mean
values ± standard deviation of the five-fold cross-validation.

Evaluation Metrics. For binary neurodiagnostic classification tasks, the classi-
fication performance is assessed using the following metrics: accuracy, sensitivity,
specificity, and Area Under the Curve (AUC).

3.2 Experimental Results and Discussion

As detailed in Table 1, LHDFormer establishes state-of-the-art performance on
both benchmark datasets. On ABIDE, our method achieves 74.29% accuracy,
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Table 2. Experimental Results of the Ablation Study.

Dataset Method ACC(%) SEN(%) SPE(%) AUC

ABIDE

LHDFormer w/o Emb 69.56±1.03 69.34±1.61 69.75±2.38 0.7509±0.0103

LHDFormer w/o NeuroWK 71.64±0.91 71.96±1.13 71.33±1.88 0.7668±0.0189

LHDFormer w/o TopoAM 72.12±1.41 71.32±1.43 72.81±2.96 0.7726±0.0112

LHDFormer 74.29±1.17 73.48±1.10 75.09±2.04 0.7978±0.0103

ADNI

LHDFormer w/o Emb 65.20±1.17 67.63±2.98 64.82±2.43 0.6986±0.0232

LHDFormer w/o NeuroWK 67.58±2.34 68.76±2.05 66.56±2.92 0.7084±0.0159

LHDFormer w/o TopoAM 69.19±1.34 69.71±1.96 68.85±2.50 0.7189±0.0196

LHDFormer 71.42±1.70 72.52±2.02 70.27±1.10 0.7347±0.0209

outperforming GNN baselines and transformer competitors. Particularly note-
worthy are the consistent gains in SEN and SPE, coupled with a 0.0431 AUC
improvement compared to the other baselines. For ADNI, LHDFormer attains
71.42% accuracy and 0.7347 AUC, surpassing the suboptimal method by 2.92%
and 0.0147 respectively, while maintaining balanced SEN/SPE enhancements.
This superiority stems from: 1) the Time-varying NeuroWalk kernel simulates
multi-step information transfer mechanisms in the brain to capture long-range
high-order dependencies within brain networks; 2) the Time-Varying Trans-
former’s synergistic encoding of local spatial patterns (through topology-aware
attention mechanism) and global temporal dynamics (via cross-window token
guidance) overcomes the single-domain bias in GNNs/Transformers.

3.3 Ablation Study

To evaluate the contribution of core components, we develop three variants of
the LHDFormer model: LHDFormer w/o Emb, which eliminates the long-range
embeddings; LHDFormer w/o NeuroWK, substituting our time-varying Neu-
roWalk kernel with a conventional random-walk kernel [9]; and LHDFormer w/o
TopoAM, replacing the topology-aware attention with standard self-attention.
1) As shown in Table 2, removing the long-range embeddings results in accu-
racy reductions of 4.73% and 6.22% on the ABIDE and ADNI datasets, respec-
tively. This substantial performance degradation underscores the critical role of
long-range embeddings in capturing global high-order dependencies. 2) Replac-
ing the time-varying NeuroWalk kernel with a static random-walk kernel leads
to accuracy declines of 2.65% (ABIDE) and 3.84% (ADNI). This validates the
NeuroWalk kernel’s adaptive modeling of the temporal evolution of long-range
correlations, enabling the model to capture disease-related alterations in latent
connectivity patterns. 3) Moreover, ablating the topology-aware attention mod-
ule causes performance deterioration, demonstrating that the topology-aware
attention mechanism enables simultaneous learning of node-level interactions
and preservation of graph structural information compared with self-attention.
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Fig. 2. Further Discussion of Long-Range Higher-Order Dependencies

3.4 Further Discussion

We first visualize discriminative long-range dependencies across both datasets
(shown as Figure. 2(a)). For the ABIDE dataset, the identified long-range depen-
dencies outlined ASD pathology pathways, including prefrontal executive con-
trol, sensorimotor integration, and visual memory compensation mechanisms.
Observed connectivity is associated with ASD: Diminished functional coupling
between MFG and PCUN correlates with social impairment, dysregulated con-
nectivity between PCG and LING corresponds to abnormal sensory processing,
and altered interactions between PreCG and HIP may underlie stereotypic be-
havior [18–20]. Regarding the ADNI dataset, the OLF-PHG-THA-PCG-MOG-
MTG connectivity pattern reflects the multifaceted pathological processes of
MCI: Early MCI pathology spreads through OLF-PHG, consistent with Braak
staging of AD; Visual semantic network dysfunction (MOG-MTG) leads to com-
plex task deficits by disrupting visual-memory interactions [21–23].

To optimize model performance, we investigate the Walk Step hyperparame-
ter (steps=4, 8, 12, 16, 32) on both datasets. As shown in Figure. 2(b), predictive
accuracy exhibits a roughly positive correlation with increasing Walk Step values.
This phenomenon may reflect the neurobiological reality of distributed informa-
tion transfer across distal brain regions. LHDFormer effectively captures these
long-range dependencies, enhancing its diagnostic utility for brain disorders.

4 Conclusion

This study presents LHDFormer, a neurophysiologically inspired framework for
dynamic high-order brain network analysis. By integrating a time-varying Neu-
roWalk kernel with a dual-domain time-varying transformer, our method achieves
adaptive modeling of long-range high-order dependencies while preserving the
dynamic nature of functional connectivity. The NeuroWalk kernel, driven by k-
walk neuroadaptive adaptive factors, enables adaptively capturing different step
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multi-scale dependency patterns through signal decay and synchronization-aware
modulation. Coupled with the Time-Varying Transformer, the framework jointly
encodes local spatial features and global temporal coordination patterns, estab-
lishing a unified representation of brain network dynamics. Future directions
include extending LHDFormer to multi-center cohorts to enhance generalizabil-
ity and refining the adaptive factor mechanism using biophysical constraints.
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