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Abstract. Left ventricular segmentation and landmark detection from
echocardiograms are routine practices in clinical settings for comprehen-
sive evaluation of cardiovascular disease. Recently, deep learning-based
models have been developed to interpret echocardiograms. However, ex-
isting methods face challenges in handling sparse annotations, limiting
their clinical applicability. Additionally, their robustness can be signifi-
cantly influenced by temporal inconsistency (i.e., abrupt prediction fluc-
tuations between consecutive frames) and inter-task conflict (i.e., de-
tected landmarks deviating from segmentation boundaries). To address
these issues, we propose a novel semi-supervised framework that in-
tegrates: 1) a knowledge distillation method for generating pseudo la-
bels of the numerous unlabeled frames to improve the performance; 2)
a Task-aware Spatial-Temporal Network (TSTNet) along with consis-
tency constraints that enhances robustness by enforcing temporal con-
sistency across frames, and inter-task consistency between segmentation
and landmark detection. Experimental results on two datasets (a pub-
lic dataset with 500 subjects and a private dataset with 1,950 subjects)
show that our proposed framework significantly outperforms the previ-
ous approaches. The source code and dataset are publicly available at
https://github.com/chenhy-97/TSTNet.

Keywords: Ultrasound · Knowledge distillation · Semi-supervised learn-
ing · Left ventricle segmentation.

1 Introduction

Cardiovascular diseases represent a major clinical concern and remain the lead-
ing cause of death worldwide [5]. Due to unique advantages of echocardiography,

https://github.com/chenhy-97/TSTNet
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such as low cost, real-time imaging, and the absence of ionizing radiation, it
has become an indispensable tool for diagnosing and assessing heart conditions
[7]. In clinical practice, the apical two-chamber (A2C) and four-chamber (A4C)
views are particularly critical for diagnostic analysis [1]. In these views, sonog-
raphers first identify three key anatomical landmarks: the apex, as well as the
left and right sides of the mitral valve. Subsequently, they manually delineate
the left ventricular (LV) border to assess cardiac function [6]. However, speckle
noise and acoustic shadows in ultrasound imaging often obscure the endocar-
dial borders [13]. These challenges underscore the urgent need for accurate and
efficient segmentation and landmark detection in echocardiograms.

Artificial intelligence (AI) demonstrates considerable promise in aiding sono-
graphers with echocardiogram segmentation and landmark detection [15,8]. Tra-
ditional AI-based approaches focus on image-level tasks within keyframes [14,10].
Li et al. employed a multi-scale feature fusion mechanism for both segmenta-
tion and landmark detection on the end-systolic (ES) and end-diastolic (ED)
frames [10]. Nevertheless, these methods fail on numerous intermediate frames,
causing even worse performance when images are contaminated by speckle noise
and acoustic shadows. To address these challenges, more recent methods in-
corporate temporal interaction across the unlabeled frames in echocardiogram
videos [12,4,11]. Deng et al. utilized a memory network to fuse temporal fea-
tures [21]. Zhang et al. leveraged inter-temporal interaction to enhance the per-
formance of clinically applicable systems through temporal cross-attention [22].
Despite these advancements, current methods impose pixel-level constraints on
the ED and ES frames, but they fail to address the issue of sparse annotations.
Furthermore, temporal information is integrated primarily at the final layer of
the network. This simple implicit interaction falls short in processing temporal
inconsistency (i.e., abrupt prediction fluctuations between consecutive frames)
and leads to inter-task conflicts (i.e., landmarks misaligned with segmentation
boundaries).

To address these challenges, we propose a novel semi-supervised framework
utilizing knowledge distillation for segmentation and landmark detection in echocar-
diograms. To the best of our knowledge, this is the first work to employ pseudo
labels from knowledge distillation for segmentation and landmark detection in
echocardiograms. The main contributions of our work are as follows: (1) We
propose a teacher-student framework to address the issue of sparse annota-
tions, where the pseudo labels generated by the teacher model possess robust
performance on large-scale clinical datasets. (2) We introduce the Task-aware
Spatial-Temporal Network (TSTNet) along with multi-consistency constraints
for segmentation and landmark detection in echocardiograms, mitigating the
robustness issues caused by temporal inconsistency and inter-task conflicts.

2 Method

To address the performance degradation caused by sparse annotations in echocar-
diogram analysis [16], we propose a semi-supervised framework for left ventric-
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Fig. 1. Overview of our proposed semi-supervised echocardiogram segmentation and
landmark detection framework.

ular segmentation and landmark detection. As shown in Fig. 1, our framework
consists of a teacher-student architecture [20] where the teacher network gener-
ates pseudo labels to recover missing intermediate frame annotations. In both
teacher and student networks, we use the proposed TSTNet, a novel backbone
designed to jointly model cardiac motion patterns and anatomical structures. To
further enhance learning robustness, we introduce consistency constraints that
simultaneously enforce temporal coherence and anatomical plausibility. More
detailed descriptions are given below.

2.1 Problem Formulation and Knowledge Distillation Network

Problem Formulation. In the semi-supervised echocardiogram segmentation
and landmark detection tasks, the training set consists of echocardiography video
sequences from multiple subjects. Given N frames of an echocardiogram video
V = {It}Nt=1 from training set, only a small number of frames are labeled as
ED and ES frames IL ∈ R2×H×W , while the majority of frames are unlabeled
IU ∈ R(N−2)×H×W , where H ×W denotes the spatial resolution of each frame.
Each labeled frame contains both the segmentation and landmark labels. The
landmark label is represented by a heatmap constructed using a Gaussian func-
tion with a kernel size of five pixels. The objective is to train a multi-task model
with both IU and IL for enhancing the segmentation and landmark detection
performance.
Knowledge Distillation Network. The proposed framework integrates a dual-
branch knowledge distillation network comprising a student network and a teacher
network, designed to jointly leverage labeled and unlabeled frames. Both net-
works adopt the TSTNet backbone (Sec. 2.2). Within this dual-branch frame-
work, the student network acts as the primary learner, actively exploring diverse
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imaging conditions. The student network processes all the frames including both
IL and IU under strong augmentations, designed to mimic clinical imaging varia-
tions. This data perturbation encourages the student to learn robust representa-
tions against potential artifacts in clinical practice. From the augmented inputs,
the student network generates segmentation probability map Ps and landmark
heatmap prediction Pl.

To prevent the student from overfitting to noisy augmented data, the teacher
network provides stabilized guidance by generating pseudo labels from anatom-
ically consistent views of the same unlabeled frames. The teacher network op-
erates on weakly augmented versions of the unlabeled frames IU, applying only
minimal perturbations to preserve anatomical coherence. This strategy ensures
a stable generation of pseudo labels (Sp for segmentation and Lp for landmarks),
which serve as surrogate supervision for the unlabeled data.

The training objective combines supervised and self-supervised losses. For
labeled frames, the supervised loss Lsup computes the discrepancy between the
student’s predictions and ground-truth (GT) annotations. The segmentation loss
employs the Dice coefficient to measure overlap between Ps and the GT masks
S, while the landmark loss uses mean squared error (MSE) to align Pl with the
Gaussian-smoothed heatmaps L:

Lsup =

(
1−

2
∑

i∈M SiP i
s∑

i∈M Si2 +
∑

i∈M P i2
s

)
︸ ︷︷ ︸

Segmentation Loss (Dice)

+
1

3

3∑
j=1

(
Lj − P j

l

)2
︸ ︷︷ ︸

Landmark Detection Loss (MSE)

, (1)

where M denotes the set of all pixel locations in the image, and j indexes
the three anatomical landmarks. For unlabeled frames, the self-supervised loss
Lself applies an identical formulation but substitutes S and L with the teacher-
generated pseudo labels Sp and Lp.

During optimization, gradients are computed and backpropagated solely through
the student network. The teacher’s parameters are updated via an exponential
moving average (EMA) of the student’s weights, ensuring gradual refinement of
the pseudo label quality while preventing abrupt changes. This update rule is
defined in Eq. 2.

θt+1
teacher = ϕ · θtteacher + (1− ϕ) · θtstudent, (2)

where θtteacher represents the parameters of the teacher network at time step t,
θtstudent denotes the parameters of the student network at the same time step,
and ϕ is a smoothing coefficient.

2.2 TSTNet

TSTNet is built on the U-shaped architecture to resolve temporal inconsisten-
cies and task conflicts in echocardiogram analysis by integrating spatio-temporal
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Fig. 2. Overview of the proposed TSTNet for per-frame echocardiogram prediction.
(a) The architecture of TSTNet. (b) The spatial block for spatial feature extraction.
(c) The temporal block for temporal feature modeling. (d) The multi-task aggregation
for combining segmentation and landmark detection tasks.

coherence and anatomical constraints. As shown in Fig. 2 (a), the network pro-
cesses k consecutive frames {Ii−k+1, ..., Ii} through a four-stage encoder-decoder
structure, generating the segmentation mask P i

s and landmark heatmap P i
l of the

frame i. The encoder consists of four stages: first applies two stages with spatial
blocks (Fig. 2 (b)) that align myocardial boundaries across adjacent frames using
spatial self-attention, followed by two stages with temporal blocks (Fig. 2 (c))
that model cardiac motion continuity through dynamically weighted temporal
attention. This design explicitly decouples structural alignment from motion dy-
namics, progressively extracting hierarchical features at four spatial resolutions
(1/2 to 1/16 scale).

The decoder integrates four parallel multi-task branches, each processing
features at distinct scales through dedicated decoder-MTA pairs. Temporal skip
connections deliver multi-scale encoder features to corresponding decoders, where
each multi-task decoder is immediately followed by a Multi-Task Aggregation
(MTA) module (Fig. 2 (d)). Every MTA enforces anatomical consistency through
two operations: First, spatial weights derived from segmentation predictions
guide landmark localization toward valid chamber boundaries. Second, land-
mark distance fields refine segmentation edges to match expected anatomical
topology. In the end of the decoder, task-specific prediction heads generate the
segmentation map P i

s and landmark heatmap P i
l .
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2.3 Multi-consistency Constraints

Temporal Motion Smoothness Constraint. Cardiac motion in echocardio-
graphy exhibits inherent smoothness due to myocardial elasticity [19]. To en-
force this physiological prior, we propose a second-order temporal constraint
that penalizes abrupt acceleration changes in both segmentation and landmark
predictions. The temporal loss Ltemp is calculated in Eq. 3.

Ltemp =

N−1∑
t=2

[
λS

∥∥P t+1
s − 2P t

s + P t−1
s

∥∥2
F
+ λL

3∑
k=1

∥∥P t+1
lk − 2P t

lk + P t−1
lk

∥∥2
F

]
,

(3)
where t and k index the time frames and landmarks, λS = 0.8 and λL = 0.2
denote the weighting factors balancing segmentation and landmark smoothness,
calibrated on validation data, ∥·∥2F presents Frobenius norm squared, measuring
the total magnitude of acceleration changes.
Inter-task Anatomical Constraint. To enforce precise anatomical relation-
ships between landmarks and segmentation boundary, we introduce a boundary-
aware constraint mechanism. Given segmentation label St at frame t, the bound-
ary coordinates Bt are derived through morphological gradient operation [17].
The inter-task anatomical constraint loss is formulated in Eq. 4.

Ltask =
1

3N

N∑
t=1

3∑
k=1

(
1− exp

(
−
d2k,t
2σ2

))
, (4)

where dk,t = min(u,v)∈Bt ∥(xk, yk)− (u, v)∥2 calculates minimum Euclidean dis-
tance for each landmark, with σ = 5 mm controlling the constraint tightness.
Integrated Optimization. The overall loss is formulated as the integration
of the four loss functions: Lsup, Lself , Ltemp, and Ltask, defined by Ltotal =
Lsup + αLself + βLtemp + γLtask.

3 Experiments

3.1 Dataset and Implementation Details

We validate the effectiveness of our proposed framework using two datasets: (1)
CAMUS consists of 1,000 echocardiography videos from 500 patients, includ-
ing A2C and A4C views, each covering half cardiac cycle with 15 frames [9]. (2)
The Second Affiliated Hospital of Wenzhou Medical University (SAH-
WMU) Dataset comprises 1,950 patients, including A2C and A4C views, each
encompassing a full cardiac cycle with 30 frames. For both datasets, we par-
tition the data into training, validation, and testing sets in a 7:1:2 ratio. For
data augmentations, strong augmentation includes adding Gaussian noise, high-
confidence contrast, and brightness enhancement. Weak augmentation involves
performing low contrast and brightness enhancement. The inputs are resized
to 256×256. We employ Dice Similarity Score (DSC), Intersection over Union
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Table 1. The performance of comparative experiments in segmentation and landmark
detection tasks.

Method
SAHWMU CAMUS

DSC↑ IoU↑ HD95↓ ADE↓ DSC↑ IoU↑ HD95↓ ADE↓
U-Net [18] 87.4±7.3 78.3±9.3 5.8±3.7 - 91.4±4.9 84.5±7.4 2.6±1.7 -

TranUnet [3] 89.3±7.2 81.3±9.9 5.1±4.6 - 91.8±4.5 85.2±7.0 2.3±1.1 -
SwinUnet [2] 87.4±0.6 78.1±9.2 6.2±4.3 - 90.4±5.4 83.0±7.9 2.7±2.1 -
CLAS [21] 88.5±6.3 79.9±9.2 5.4±4.2 - 91.6±5.5 84.9±8.2 2.9±3.3 -

SAMUS [12] 91.0±5.3 83.9±8.0 3.9±2.5 - 92.2±4.8 85.9±7.6 2.5±1.9 -
MemSAM [4] 91.2±4.2 84.5±6.8 3.9±1.8 - 92.0±4.7 85.5±7.5 2.5±2.1 -

EchoGLAD [14] - - - 3.7±2.2 - - - 4.2±2.6
Echo-STG [11] - - - 4.6±2.4 - - - 4.6±3.1
EchoEFNet [10] 89.5±5.6 81.4±8.5 4.8±3.6 4.5±3.0 91.8±4.1 85.9±6.7 3.0±1.6 4.3±3.4

CSC [22] 90.4±6.5 83.5±8.9 4.3±3.1 3.9±2.2 92.7±4.8 86.8±7.4 2.5±1.8 4.9±2.9
Ours 92.7±4.0 86.6±6.6 3.3±1.9 2.7±2.1 93.8±3.4 88.4±5.8 2.0±1.0 3.6±2.5

(IoU), Hausdorff Distance 95% (HD95), and Average Distance Error (ADE) to
assess the segmentation and landmark detection tasks.

The experiments were conducted on an Ubuntu 18.04 system utilizing an
NVIDIA A100 80G HPC cluster. Python 3.11 along with PyTorch 2.4.0 was em-
ployed for the implementation. The training configuration includes 100 epochs, a
batch size of 4, and an initial learning rate of 0.0001. The optimization was per-
formed using the AdamW optimizer. The hyper-parameters were set as follows:
α, β, γ, ϕ are 1, 5, 0.1, and 0.99, respectively.

3.2 Comparison with State-of-the-Art Methods

We have evaluated the proposed framework against state-of-the-art methods
across three categories: segmentation (U-Net [18], TransUnet [3], Swin-Unet [2],
CLAS [21], SAMUS [12], MemSAM [4]), landmark detection (EchoGLAD [14],
Echo-STG [11]), and multi-task models (CSC [22], EchoEFNet [10]).
Quantitative Comparison. The results of the echocardiogram segmentation
and landmark detection tasks are depicted in Table 1. For the segmentation
task, the proposed framework improves DSC, IoU, and HD95, by 1.5%, 2.1%,
and 0.6 mm, respectively, in the SAHWMU dataset. In the CAMUS dataset,
the improvements are 1.1%, 1.6%, and 0.5 mm, respectively. For the landmark
detection task, the proposed framework achieves a reduction of 1.0 mm and 0.6
mm in ADE on the SAHWMU and CAMUS datasets, respectively. The quan-
titative comparisons conclusively show superior performance of our framework,
with statistically improvements over existing methods.
Qualitative Comparison. A qualitative analysis using segmentation and land-
mark detection results is performed on two patients, as shown in Fig. 3. The ED
and ES frames from these patients exhibit blurred endocardial and left ventricu-
lar landmarks, primarily due to speckle noise around the ventricle. Other baseline
and multi-task methods fail to recognize the blurred endocardial boundaries ac-
curately and left ventricular landmarks. In contrast, our method demonstrates
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Table 2. Ablation studies of the proposed framework. Sup. represents supervised
using only ED and ES frames. Semi. refers to the semi-supervised using intermediate
frames. Cons. indicates the inclusion of temporal and inter-task constraints.

Method
SAHWMU CAMUS

DSC↑ IoU↑ HD95↓ ADE↓ DSC↑ IoU↑ HD95↓ ADE↓
Sup. 91.6±4.5 84.9±7.2 3.7±2.1 2.9±2.1 92.4±3.7 87.8±6.3 2.6±1.8 3.7±2.6
Semi. 92.6±3.9 86.4±6.4 3.4±2.0 2.8±2.1 93.4±4.0 88.0±6.5 2.5±1.4 3.7±3.5

Semi.+ Cons. 92.7±4.0 86.6±6.6 3.3±1.9 2.7±2.1 93.8±3.4 88.4±5.8 2.0±1.0 3.6±2.5

superior performance in accurately identifying these landmarks, highlighting its
robustness against speckle noise and achieving precise landmark detection in
challenging scenarios.

3.3 Ablation Studies

Ablation studies validate the contributions of key components (Table 2). The
semi-supervised strategy improves performance by propagating pseudo labels
to unlabeled frames. Multi-consistency constraints further enhance anatomical
plausibility, reducing landmark errors. Optimal results emerge when synergis-
tically combining these innovations, demonstrating complementary benefits be-
tween architectural design and physiological priors.

4 Conclusion

In this study, we propose a semi-supervised framework for echocardiogram seg-
mentation and landmark detection. Different from the existing works, our frame-
work has three key contributions. First, we use a teacher-student network with
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knowledge distillation to generate anatomically consistent pseudo labels from
unlabeled frames, which effectively addresses the challenge of sparse annotation.
Second, we introduce TSTNet, a novel network combining hierarchical attention
mechanisms, to jointly model cardiac motion patterns and anatomical struc-
tures. Last, we incorporate temporal consistency regularization and inter-task
consistency constraints to enhance learning robustness. Experimental results on
two datasets containing 2,450 subjects show that our framework significantly
outperforms existing methods in echocardiogram segmentation and landmark
detection.
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